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Abstract

This paper proposes a nonparametric approach to identify and estimate the generalized additive
model with a flexible additive structure and with possibly discrete variables when the link function
is unknown. Our approach allows for a flexible additive structure which provides the applied
researchers the flexibility to specify their model according to economic theory or practical experience.
Motivated by the concerns from empirical research, our method also allows for multiple discrete
variables in the covariates. By transforming our model into a generalized additive model with
univariate component functions, our identification and estimation hence follows a procedure adapted
from the case with univariate components. The estimators converge to normal distributions in
large sample with a one-dimensional convergence rate for the link function and a dk-dimensional
convergence rate for the component function fk(·) defined on Rdk for all k.
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1 Introduction
Flexibility in model specification is one of the key features pursued by the applied economists when
they use a nonparametric method in applications, since different applications need different model
specifications which are given by economic theory or practical experience. In addition, there are
potentially multiple discrete covariates in many economic datasets. It is hence an empirical concern to
handle discrete covariates appropriately in the estimation procedures of economic applications.

In this paper, we address the above two concerns in estimating the generalized additive model
with an unknown link function as

H(x) = G
� K

Â
k=1

fk(xk)
�
, (1)
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where H(·) is a function that can be consistently estimated (such as nonparametric regression), but the
link function G(·) and the component functions fk(·)’s are unknown with x ⌘ (x1, . . . , xK) 2 Rd and
xk

2 Rdk . The first concern is addressed by allowing a flexible grouping of the covariates in the sub-
vectors xk for k = 1, . . . , K. In this way, a researcher can group the covariates according to economic
theory or practical experience , instead of having to restrict one or all of sub-vectors to be univariate.
The second concern is addressed by allowing discrete covariates in the estimation procedure. The
parametric version of this functional restriction has been implemented in many economic applications,
including the very popular specification of constant elasticity of substitution (CES) in the estimation of
production function. See, e.g., Kmenta (1967); Hodges (1969); Paraskevopoulos (1979); Antras (2004);
Klump, McAdam, and Willman (2007); Berkowitz, Ma, and Nishioka (2017), among others.

To identify the model primitives of G(·) and fk(·)’s, we transform the model (1) by a known
mapping into a new model with the link function G(·) and some univariate component functions
f̃k(·)’s. We then identify the new model by applying some existing identification approach to the
generalized additive model with univariate components. Closely following the identification strategy,
we propose a three-step procedure to estimate the link G(·) and the original components fk(·). The
consistency and asymptotic normality is then established for the estimator of the link G(·) at a
one-dimensional convergence rate and for the estimator of the component fk(·) at a dk-dimensional
convergence rate.

Our paper contributes to the estimation of generalized additive model. With a known link function
and only univariate component functions, Chen, Härdle, Linton, and Severance-Lossin (1996), Linton
and Härdle (1996), Horowitz and Mammen (2004), and Ma (2012), among others, estimated the
univariate components at a one-dimensional convergence rate. Their estimators hence have no
curse of dimensionality. With an unknown link and only univariate components, Horowitz (2001),
Horowitz and Mammen (2007, 2011), and Lin, Pan, Lv, and Zhang (2018), among others, recovered
the univariate components still at a one-dimensional convergence rate and hence avoided the curse of
dimensionality. Jacho-Chávez, Lewbel, and Linton (2010, JLL hereafter) generalized the framework
with only univariate components (and an unknown link) to allow multivariate components, as long
as one component function is univariate. Our paper further generalizes the model to allow for
a flexible specification of additivity, and the existence of a univariate component function is not
needed. In a related area, Lewbel, Lu, and Su (2015) provided a nonparametric test of whether
the monotonic transformation structure is correctly specified. With a weaker notion of separability,
Pinkse (2001) developed the estimators of f̃1(·), . . . , f̃K(·) in a nonparametric regression with weak
separability as E(Y|X = x, Z = z) = G̃(x, f̃1(z1), . . . , f̃K(zK)) where G̃ is monotone in f̃1, . . . , f̃K, and
furthermore all of f̃1(·), . . . , f̃K(·) are monotone in their respective first arguments. He showed that
the functions f̃1(·), . . . , f̃K(·) can be identified up to a monotonic transformation. The generalized
additive model are in general identified up to location and sign-scale normalizations.1 Our paper is
most relevant to Horowitz (2001) and JLL in this research line. To clarify our contributions relative
to them, consider model (1) with K = 2 and d1, d2 � 2. Horowitz (2001) identified such a model
by further imposing an additive structure on both f1(·) and f2(·) as f1(x1) = Âd1

k=1 f1k(x1
k) and

f2(x2) = Âd2
k=1 f2k(x2

k). Although such an extra additive structure reduces the dimensionality of

1Other related papers include Ma and Song (2015) who estimated the unknown link function of varying index coefficient
models (VICM) by the means of B-splines, as well as Kohler and Krzyżak (2017), and Schmidt-Hieber (2020). The latter two
articles estimated nonparametric regression by deep neural network (DNN) methods, and have natural links to the generalized
additive model.
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this problem to 1, it is vulnerable to misspecification error. The economic theory might rule out
any additional additive structure on the components of f1(·) and f2(·). JLL identified this model
by imposing an additive structure on one of f1(·) and f2(·) as f1(x1) = f11(x1

1) + f12(x1
2, . . . , x1

d1
)

or f2(x2) = f21(x2
1) + f22(x2

2, . . . , x2
d2
). The extra additive structure imposed by JLL is weaker than

the one of Horowitz (2001), but their identification requires a large image/support condition (see
Condition I2.(iv) of their Assumption I) which substantially restricts its applicability in real empirical
applications. Their identification strategy also rules out discrete elements in x1 and x2 (see condition I1
of their Assumption I), and hence further restricts their applicability in real applications.2 In contrast,
we identify such a model without imposing any extra additive structure or any large image/support
condition. Our identification approach also allows for discrete elements in x1 and x2.

Our paper also contributes to the research line of the identification of model primitives by exploit-
ing the monotonicity restrictions on nonparametric functions. One of our key identification steps
exploits the monotonicity of the unknown link G(·) to transform the original model into a new model
with univariate components. Our identification is hence established by this connection between
our model with a flexible grouping and the transformed model with univariate components. The
identification of latter has been well studied. The monotonicity of transformation function has been
employed to identify the model primitives of different variants of transformation model by, e.g.,
Khan (2001), Chen (2002, 2010a,b, 2012), and Chen and Zhang (2020). Moreover, the monotonicity of
nonparametric function on latent random variable has been used to identify the non-separable models
by, e.g., Chesher (2003) and Matzkin (2003). In the auction literature, the monotonicity of bidding
strategy helps to identify the value distribution by, e.g., Guerre, Perrigne, and Vuong (2000, 2009),
Athey and Haile (2002), Li and Zheng (2009), Marmer and Shneyerov (2012), Gentry and Li (2014), and
Li and Liu (2018). The monotonicity of strategies is also used to identify discrete games by, e.g., Tang
(2010); De Paula and Tang (2012); Grieco (2014); Liu, Vuong, and Xu (2017), with a notable exception
of Lewbel and Tang (2015). To test whether monotonicity restrictions hold, Hoderlein, Su, White, and
Yang (2016) provided a testing procedure in the structural model without strategic interaction; while
Liu and Vuong (2020) proposed nonparametric tests for monotonicity of strategies in the games of
incomplete information.3

The rest of this paper is organized in the following way. Section 2 presents our generalized additive
model with two component functions. It also lays out our strategy to identify the link function
G(·) and the component functions fk(·) for k = 1, 2. In Section 3, we propose a nonparametric
estimation procedure closely following the identification strategy. Section 4 then establishes the
large-sample properties of our estimators. In Section 5, a simulation is used to demonstrate the finite
sample performance of our nonparametric estimators. Section 6 briefly discusses how to extend our
framework to cases with discrete covariates and more than two components. The paper is concluded
in Section 7. An appendix collects the proofs of our theorems. The online Supplemental Material (SM)
collects some notations and technical lemmas (as well as their proofs).

2Note that discrete regressors are still not allowed to enter any component functions in their extension to handle discrete
regressors (see Section 6 of Jacho-Chávez, Lewbel, and Linton, 2010).

3While maintaining the monotonicity restriction on bidding strategies, Liu and Luo (2017) proposed a nonparametric
inference procedure to compare the valuation distributions in first price auctions.
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2 The model and identification
We consider the generalized additive model with an unknown link function as follows,

H(x) = G
� K

Â
k=1

fk(xk)
�
, (2)

where H(·) is a function which can be identified directly by the joint distribution of observables
and can therefore be consistently estimated, such as the mean regression function E(Y|X = ·) or
the quantile regression function QY|X(t0|·) for a given t0, and x = (x1, · · · , xK) such that xk

2 Rdk

for dk � 1. The parameter of interest includes the unknown link function G(·) and the component
functions fk(·) for k = 1, . . . , K.

For convenience of discussion, we focus on the case of two component functions in the link, i.e.
the model is simplified as

H(x) = G( f1(x1) + f2(x2)), (M)

where the unknown link function G(·) is monotonic, x ⌘ (x1, x2) 2 Rd and xk
2 Rdk for k = 1, 2. We

will return to the general case with more than two components in Section 6.2. Clearly, d = d1 + d2.
Throughout the paper, let X ⌘ (X1, X2) be a random vector in Rd with Xk denoting a random vector
in Rdk , and x ⌘ (x1, x2) be its realized value with xk

2 Rdk , for k = 1, 2. In addition, let pV(·) (or
pVs |Vt(·|vt)) denote the probability density function of any given random vector/variable V (or the
conditional density function of Vs given Vt = vt).

In this paper, we aim to provide the identification and estimation of G(·) and fk(·)’s in such a
model under reasonably weak restrictions motivated by empirical concerns. Specifically, we allow
for a flexible division of (x1, x2) according to economic theory or practical experience,4 and discrete
variables in x1 and/or x2. The latter is motivated by the presence of discrete variables in many
economic datasets. For presentation purpose, we first consider the case of (x1, x2) to only have
continuous variables. We then return to the case with discrete variables in Section 6.1.

We obtain the nonparametric identification of (M) in three steps. In the first step, we transform it
into a new generalized additive model with univariate components. The new model has the same
link function as (M). In the second step, the transformed model is identified by a strategy adapted
from Horowitz (2001). The original component functions are identified in the third step by applying
the inverse of step-one transformation.

We first transform the original model (M) into a new model with univariate components. Such a
transformation is given by the following theorem.

Theorem 1. Under a strictly monotonic link function G(·), the generalized additive model (M) can be
transformed equivalently to

H(z) = G( f̃1(z1) + f̃2(z2)), (M’)

where H(z) = E[H(X)|z1(X1) = z1, z2(X2) = z2], the inverse of f̃k(·) is f̃�1
k (s) =

R
G(s + f�k(x�k)) ·

w�k(x�k)dx�k, and zk(xk) =
R

H(x) · w�k(x�k)dx�k with freely chosen non-negative weight functions
wk(·) for k = 1, 2 where �k denotes the index other than k in {1, 2}.

4For example, let (x1, x2) = (x1, x2, x3, x4). Our model allows all possible divisions, such as x1 = (x1, x2), x2 = (x3, x4) or
x1 = x1, x2 = (x2, x3, x4).
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Theorem 1 transforms the original model (M) into a new model (M’) which is easier to analyze for two
reasons. First, the new function H(·) can be identified, since the function H(·) and hence its weighted
integrals zk(·)’s are identified. Second, both of the new components f̃1(·) and f̃2(·) are univariate.
Moreover, the functions f̃k(·)’s and their inverses are monotonic when the link G(·) is monotonic. To
simplify the notation, hereafter let Z = (Z1, Z2) with Zk = zk(Xk), and z = (z1, z2) with zk

2 R for
k = 1, 2.

Before proceeding with the identification of new model (M’), we give the identifying assumptions
as follows,

Assumption I (Identification condition). (i) Location normalization: f̃1(z1
0) = f̃2(z2

0) = 0 for some interior
point (z1

0, z2
0) in the support of Z;

(ii) Scale normalization:
R

w3(z1)/ f̃ 01(z
1)dz1 = 1 where w3(·) is some non-negative weight function by choice;

(iii) Monotonicity: the link function G(·) is strictly monotonic.

Parts (i) and (ii) of Assumption I specify the location and scale normalizations needed for the
identification. Similar normalizations have been adopted by the literature (see, e.g., Horowitz, 2001) to
identify the generalized additive model. Note that our identification strategy still works (with minor
change) if the location normalization is relaxed to f̃k(zk

0) = f̃k0 with some known constant f̃k0 2 R for
k = 1, 2. We can also adopt other location and scale normalizations, such as the ones of JLL. Part (iii)
imposes a monotonicity condition on the link function G(·). Such a monotonicity condition is used to
guarantee the existence of f̃k(·)’s and their inverses.

In the second step, we turn to identify the new model (M’). Such an identification is achieved in
two stages by applying a strategy adapted from Horowitz (2001). In the first stage, we identify the
transformed components f̃1(·) and f̃2(·). In the second stage, the unknown link G(·) is identified.

We now turn to the identification of transformed components f̃k(·)’s. Let H(z) = E[H(X)|Z = z],
and ∂kg(z) = ∂g(z)/∂zk for any multivariate function g(z). The identification idea comes from the
following two basic equations:

∂1H(z) = G0( f̃1(z1) + f̃2(z2)) · f̃ 01(z
1) (3)

∂2H(z) = G0( f̃1(z1) + f̃2(z2)) · f̃ 02(z
2) (4)

Let (4) be divided by (3), we obtain
f̃ 02(z

2)

f̃ 01(z1)
=

∂2H(z)
∂1H(z)

. (5)

We next multiply both sides by w3(z1) and integrate (i) by z1 on the whole support of Z1
⌘ z1(X1)

and (ii) by z2 from z2
0 to z2, and get

f̃2(z2) =
Z z2

z2
0

f̃ 02(z
2)dz2

·

Z
w3(z1)/ f̃ 01(z

1)dz1 =
Z z2

z2
0

Z
∂2H(z)
∂1H(z)

· w3(z1)dz1dz2, (C2)

where the first equality comes from the location and scale normalizations imposed by Assumption I.
The second transformed component function f̃2(·) is hence identified by (C2).

The identification of f̃1(·) follows a similar strategy. Specifically, we apply the former strategy to
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f̃ 01(z
1)/ f̃ 02(z

2) = [∂1H(z)]
�
[∂2H(z)] and then have

f̃1(z1) =
h Z z1

z1
0

Z
∂1H(z)
∂2H(z)

· w4(z2)dz2dz1
i.h Z

w4(z2)/ f̃ 02(z
2)dz2

i
, (6)

which can identify the first transformed component f̃1(·) if the denominator
R

w4(z2)/ f̃ 02(z
2)dz2 can

be identified. This is achieved by the scale normalization and (5) as

1R
w4(z2)/ f̃ 02(z2)dz2

=

R w3(z1)
f̃ 01(z

1)
dz1

R w4(z2)
f̃ 02(z2)

dz2
=
Z w3(z1)
R f̃ 01(z

1)

f̃ 02(z2)
· w4(z2)dz2

dz1 =
Z w3(z1)
R ∂1H(z)

∂2H(z) · w4(z2)dz2
dz1,

which introduces an expression to identify the first transformed component f̃1(·) as follows

f̃1(z1) = c ·
Z z1

z1
0

Z
∂1H(z)
∂2H(z)

· w4(z2)dz2dz1, (C1)

where c =
R

w3
�
z1�

·

h R ⇥
∂1H(z)

�
∂2H(z)

⇤
· w4

�
z2�dz2

i�1
dz1. Consequently, the first transformed

component function f̃1(·) is identified by (C1).
After identifying the transformed components f̃k(·)’s, we now investigate the identification of

the unknown link G(·). The function T(z) = f̃1(z1) + f̃2(z2) is identified once the transformed
components f̃1(·) and f̃2(·) are identified. The unknown link function G(·) is then identified by the
nonparametric regression of H(X) on T(Z), namely E

⇥
H(X)

��T(Z)
⇤
, due to the following result

E
⇥
H(X)

��T(Z) = t
⇤
= E

⇥
H(Z)

��T(Z) = t
⇤
= G(t), (L)

where the first equality comes from the fact that, given T(Z), the conditional expectation of H(X)

and H(Z) = E
⇥
H(X)

��Z
⇤

are the same by the law of iterated expectation; and the second equality
holds due to the restriction given by (M’). In particular, when H(X) is a nonparametric regression
E(Y|X), by the law of iterated expectation, the identification equation (L) for the link G(·) can be
further simplified as

G(t) = E
⇥
Y
��T(Z) = t

⇤
. (L’)

In the final step, we use the inverse of step-one transformation to identify the original components
f1(·) and f2(·). Notice that the original link G(·) has already been identified in step two. This is
accomplished by the following mapping from the inverse of step-one transformation,

fk(xk) = f̃k(zk(xk)), for k = 1, 2, (7)

which can be derived by replacing s with fk(xk) in the expressions of f̃�1
k (·) of Theorem 1 and

exploring the equality of (M). Both of the original component functions fk(·) for k = 1, 2 are then identified,
since zk(·)’s are identified functions by their definitions in Theorem 1, and f̃k(·)’s have been identified
in step two.

We summarize the above discussion on the identification of the link function G(·) and the original
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component functions fk(·)’s in the following theorem whose proof is omitted.

Theorem 2. Let Assumption I hold. Given the expressions in (C1), (C2), and (L) are well defined, the
link function G(·) is identified by (L), and the original component functions are identified by (7) where the
transformed component functions f̃k(·)’s are given by (C1) and (C2) and the weighted integrals zk(·)’s are
defined by Theorem 1 for k = 1, 2. In particular, when H(x) = E(Y|X = x), the link function G(·) is
identified by a simplified expression as (L’).

Theorem 2 identifies the link G(·) and the original components fk(·)’s for k = 1, 2 by applying
Horowitz (2001)’s strategy to the transformed model (M’) in Theorem 1. In addition, Theorem 2
establishes the identification of model primitives when there are only two components within the link.
Such an identification strategy can be easily extended to the case of more than two components (i.e.
K > 2). We will briefly discuss such an extension in Section 6.2.

Remark 1: Theorem 2 shows that the link G(·) and components fk(·)’s are identified under each
chosen set of weights wk(·), k = 1, . . . , 4. The choice of weights wk(·) affect the efficiency of estimating
G(·) and fk(·)’s.

3 Estimation
This section only considers estimating the parameter of interest in the case of nonparametric (mean)
regression for H(·), i.e. H(x) = E(Y|X = x). We leave other cases of H(·) (such as the case of quantile
regression) for future research. In the case of nonparametric regression, note that

E
⇥
Y
��Z = z

⇤
= H(z) = G

�
f̃1(z1) + f̃2(z2)

�
(8)

by the law of iterated expectation. That is, our estimation problem is essentially the same as Horowitz
(2001)’s one, in which all component functions are univariate, if the true z1(·) and z2(·) were used in
our estimation. Consequently, we propose a three-step estimation procedure by the kernel method to
recover the parameter of interest, namely the link function G(·) and the component functions fk(·) for
k = 1, 2. We leave other nonparametric alternatives such as the sieve method proposed by, e.g., Ai
and Chen (2003) and Chen (2007), for future research. In the first step, the nonparametric regression
H(·) and its partial integrals zk(·)’s are recovered by the local polynomial method, then the partial
derivatives ∂kH(·) for k = 1, 2 are estimated by another local polynomial regression of Y on two
generated regressors bZ1 = bz1(X1) and bZ2 = bz2(X2). In step two, the (transformed) components f̃k(·)’s
are estimated through the expressions of (C1) and (C2) by replacing ∂kH(·) for k = 1, 2 with their
step-one estimates, and the link G(·) is recovered through the local polynomial regression according
to (L’). In the third step, the original components fk(·) for k = 1, 2 are then recovered according to (7)
by replacing f̃k(·) and zk(·) with their nonparametric estimates.

Such a kernel estimation approach has several attractive features. First, the estimation strategy
closely follows the identification idea laid out in Section 2. In particular, it transforms the estimation
problem with multivariate components to the one with univariate components. The latter has been
well studied in the literature. Second, it can group (X1, X2) in a flexible way. This flexibility can
be important to adopt the generalized additive model in real empirical applications, since many
applications may specify some or even all component functions to be multivariate. Third, we only
need one continuous variable in X1 and X2, namely, the other covariates in X1 and X2 can be all
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discrete. For presentation purpose, we consider the case of (X1, X2) to only have continuous variables
here. We will return to the case with discrete variables in Section 6.1.

Specifically, our estimation approach proceeds in three steps as follows.
Step 1. Estimation of ∂kH(·). We first use a local rth-order polynomial method to estimate H(x) =
E[Y|X1 = x1, X2 = x2]5. We use a leave-one-out estimator bH�j(x), namely, the intercept of

ba = arg min
a

Â
i 6=j

�
Yi � Â

0|k|r
ak(Xi � x)k�2K

⇣Xi � x
hH

⌘
,

where k = (k1, k2, . . . , kd) is a d-tuple of integers, |k| = k1 + k2 + · · ·+ kd, (Xi � x)k = (X1
i � x1)k1 ⇥

(X2
i � x2)k2 ⇥ · · ·⇥ (Xd

i � xd)kd , and K(x1, . . . , xd) = Pd
`=1k(x`) with k(·) being a univariate kernel

function (i.e. a multiplicative kernel is used in the multivariate case). More details of local poly-
nomial regression could be found in the Appendix S.1. The generated regressors are estimated by
bz1
�
X1

i
�
=
�
1
�

n
�
· Ân

j=1
bH�j
�
X1

i , X2
j
�

and bz2
�
X2

i
�
=
�
1
�

n
�
· Ân

j=1
bH�j
�
X1

j , X2
i
�

with the weights wk(·)

to be the marginal densities of Xk on SXk , namely wk(·) = pXk (·), for k = 1, 2.

Finally, the partial derivatives ∂kH(·) can then be recovered by another local rth-order polynomial
estimation, i.e. the slope coefficients of

bb =arg min
b

n

Â
i=1

�
Yi � Â

0k1+k2r
bk1,k2(

bz1
�
X1

i
�
� z1)k1(bz2

�
X2

i
�
� z2)k2

�2

· k
⇣ bz1

�
X1

i
�
� z1

hH

⌘
k
⇣ bz2

�
X2

i
�
� z2

hH

⌘
.

Denote the derivative estimators by ∂k bH(z) for k = 1, 2.
Step 2. Estimation of the transformed model. The transformed component functions f̃k(·)’s are
estimated by the sample analogue of (C1) and (C2) as follows:

b̃f 1
�
z1� = bc

Z z1

z1
0

Z
∂1 bH(z)
∂2 bH(z)

w4
�
z2�dz2dz1, b̃f 2

�
z2� =

Z z2

z2
0

Z
∂2 bH(z)
∂1 bH(z)

w3
�
z1�dz1dz2,

where bc=
R

w3
�
z1�⇥ R ⇥∂1 bH(z)

�
∂2 bH(z)

⇤
· w4

�
z2�dz2⇤�1dz1.

The link function G(·) is then estimated by the intercept of

bg = arg min
g

n

Â
i=1

�
Yi � Â

0kr
gk(
b̃f 1
�bZ1

i
�
+ b̃f 2

�bZ2
i
�
� t)k�2k

⇣ b̃f 1
�bZ1

i
�
+ b̃f 2

�bZ2
i
�
� t

�

hG

⌘
,

where bZk
i = bzk(Xk

i ) for k = 1, 2.
Step 3. Estimation of the original component functions fk(·)’s. Lastly, the original component
functions f1(·) and f2(·) are estimated by

bfk
�
xk� = b̃f k

⇣
bzk
�
xk�
⌘

, for k = 1, 2.

Three remarks are in order. First, our estimators essentially have similar asymptotic properties to
5Here, r is also the smoothness of unknown functions and densities. See Assumption A.3.

8



the Horowitz (2001)’s estimators if the true partial integrals zk(·)’s were used so that the first step is
not needed. Second, we use local polynomial regressions instead of local constant ones to address the
boundary bias issue (see also Fan and Gijbels (1992)). Third, the step-two estimation of the link G(·)

can be viewed as a result of estimating it by a sample analogue of (L’). It can also be viewed as a result
of recovering G(·) by a sample analogue of a moment condition of G(t) = E[Y| f1(X1) + f2(X2) = t]

which comes from (M) and the law of iterated expectation.

4 Large Sample Properties
In this section, we study the large sample properties of the estimators proposed in Section 3. Let
d1 � d2 only for presentation purposes.6 We first state the assumptions under which the large
sample properties of our estimators are established. Let int(Q) denote the interior of any given
set Q. Let SW be the support of a random vector/variable W, and SG be defined as {t : t =

f1(x1) + f2(x2) for some (x1, x2) 2 S(X1,X2)}.

Assumption A.1 (DGP). {(Yi, Xi)}
n
i=1 is an i.i.d. sample from the distribution of (Y, X) which satisfies (M)

and (i) E(|Y|4+s
|X = x)  C for some finite C, positive s, and all x 2 SX; (ii) Var(Y|X = x) is continuous

in x.

Assumption A.2 (distribution of X). The random vector X satisfies (i) SX is compact; (ii) the distribution
of X is absolutely continuous with respect to Lebesgue measure and has density of pX(·) > 0 in the interior
of SX; (iii) there exist some compact intervals I1 ⇢ int

�
SZ1

�
, I2 ⇢ int

�
SZ2

�
and some c > 0 such that (a)

f̃ 0k(z
k) � c for all zk

2 Ik and k = 1, 2, (b) P(X : Zk
2 Ik, k = 1, 2) > 0, (c) zk

0 2 Ik where zk
0 is defined in

Assumption I for k = 1, 2, (d) |G0(·)| � c on SG.

Assumption A.3 (smoothness of G, fk and pX). (i) The link function G(·) is (r + 1) times continuously
differentiable. (ii) The component functions fk(·) for k = 1, 2 and density pX(·) are (r + 1) times differentiable
with respect to any mixture of its arguments with uniformly continuous derivatives on their supports SXk and
SX.

Assumption A.4 (weights). (i) For k = 1, 2, the weight function wk(·) = pXk (·). (ii) For k = 3, 4, the
weight function wk(·) is non-negative and bounded with support Swk ⇢ Ik�2 such that wk(·) has (r + 1)-th
continuous derivatives on Swk with

R
wk(zk�2)dzk�2 = 1.

Assumption A.5 (kernel). The univariate kernel function k(·) is symmetric, bounded, and continuously
differentiable on its support [�1, 1] For any d0 � 1 and a kernel function K(·) on [�1, 1]d0 , there is
K(s1, . . . , sd0) = Pd0

j=1k(sj). Let Hj(u) = ujK(u) for all integers j = (j1, j2, · · · , jd) and u 2 Rd. Then
Hj(u) is Lipschitz continuous on [�1, 1]d for all j with 0  |j|  2r + 1.

Assumption A.6 (bandwidth). As n ! •, the bandwidth sequences hH, hH, and hG go to zero and satisfy:

(i) nhd+r+1
H /log(n) ! •, nh6

H
/log(n) ! •, nh3

G/log(n) ! •,

(ii) hd2
H /hH ! 0, log(n)2/[nhd1/2+r+1

H h3
H
] ! g1, n · hd2

H · h2r
H
! g̃1,

(iii) hr+1
H /hG ! 0, n · hd1

H · h2
G ! •, nh2r+3

G ! g2, n · h2r+2
H · hG ! g3, nhd2+2r+2

H ! g̃2,

6If d1 < d2, we can define x1 = x2 and x2 = x1. It then follows that d1 > d2 where dk denotes the dimension of xk for
k = 1, 2. We then study the new model of H(x1, x2) = G

�
f 1(x1) + f 2(x2)

�
where H(x1, x2) = H(x1, x2), f 1(x1) = f2(x2), and

f 2(x2) = f1(x1).
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(iv) hr
H

/hG ! 0, hG/hH ! dG, n · h2r
H
· hG ! g4,

where g1,. . . ,g4, g̃1, g̃2, and dG are some non-negative constants.

Assumption A.1 describes the model and Data Generating Process (DGP). Assumption A.2 (i) and
(ii) give some regularity conditions on the support and density function of the random vector X. With
the normalization conditions in Assumption I, Assumption A.2 (iii) provides sufficient conditions to
identify the component functions fk(·)’s and the link function G(·).

Assumption A.3 contains some smoothness conditions on the link function G(·), the component
functions fk(·)’s, and the density function pX(·). They require those functions having a smoothness
of (r + 1) in order to make our Taylor-series expansions to proper orders. In addition, they imply
that the transformed component functions f̃k(·)’s also have (r + 1) derivatives which are uniformly
continuous on their supports.

Assumption A.4 describes the condition on the weight functions wk(·) for k = 1, . . . , 4. For k = 1, 2,
it uses the marginal density of Xk on SXk as the weight wk(·) to estimate the partial integrations
zk(·) in step one of our estimation approach laid out in Section 3. Other weights for w1(·) and w2(·)

can also be used. For k = 3, 4, it requires the weight function wk(·) to be (r + 1) times continuously
differentiable on its support.

Assumption A.5 gives the restrictions on the univariate kernel function k(·) which builds all
multivariate kernel functions throughout this paper in a multiplicative way. This assumption is
also used in other local polynomial literature. See, e.g., Kong, Linton, and Xia (2010) and JLL. This
assumption is utilized to derive the uniform asymptotic representation of local polynomial estimators.

Assumption A.6 specifies the conditions on the choices of bandwidths used in our kernel estimation.
These conditions permit various combinations of bandwidths hH , hH, and hG. For example, they
are satisfied when hH 2

�
n�1/(r+1+d), n�(r+1)/[r·(2r+3)]�, and hH = hG = n�(r+1)/[r·(2r+3)] for large

enough r. They ensure that the remainder terms are negligible in each stage of our estimation. In
particular, conditions (ii)-(iv) control the contributions from the previous estimation steps to the
asymptotic variances of bfk(·) and bG(·) for k = 1, 2.

We now present the asymptotic results of our estimators of the component functions fk(·) and the
link function G(·) for k = 1, 2. We first consider the estimation of original component functions fk(·)

for k = 1, 2. Our third theorem gives the asymptotic properties of the estimators bfk(·) for k = 1, 2.

Theorem 3. Suppose that Assumptions I, A.1-A.6 hold. Then, for every k = 1, 2, as n ! •: (i)

supxk2SXk

�� bfk(xk) � fk(xk)
�� ! 0 in probability, and (ii) for any xk

2 SXk ,
q

nhdk
H

⇣
bfk
�
xk�

� fk
�
xk�

�

Bn fk (xk)
⌘

d
! N

⇣
0, s2

k (xk)
⌘

where Bn fk (xk) and s2
k (xk) are given by (S.1.1) and (S.1.2), respectively.

Theorem 3 establishes the uniform consistency and asymptotic normality of our estimators of original
component functions fk(·) for k = 1, 2. It shows that the only contributions from previous estimation
steps are in the resulting biases of bfk(·) for k = 1, 2 in the final step. The variances of previous steps
do not contribute into the variances of bfk(·), namely the asymptotic variances of b̃f k(·) do not enter the
ones of bfk(·). In particular, since the estimator can be represented as bfk(·) =

b̃f k(
bzk(·)), the asymptotic

bias term Bn fk (xk) consists of two parts. The first part hr
H
Bk(zk(xk)) is the bias of the infeasible

estimator ˇ̃fk(zk(·)) of fk(·) if the (unobserved) true zk(·)’s were used in all three steps. Specifically,
the infeasible estimator ˇ̃fk(·) of the transformed component function f̃k(·) is obtained by using the
true zk(·)’s, instead of their estimators bzk(·)’s, to recover ∂kH(·) in the first step. The second part

10



hr
H · [ f̃ 0k(zk(xk))Dk(xk) + B̃k(zk(xk))] is the additional bias brought by using the estimators bzk(·)’s,

instead of the true functions zk(·)’s, in all three steps.
Two additional remarks are in order. First, the asymptotic bias terms Bn fk (xk) for k = 1, 2 is control-

lable in general when we use bandwidths satisfying Assumption A.6, i.e. lim supn!•

q
nhdk

H Bn fk (xk) <

• holds. Second, there are two ways to consistently estimate the asymptotic variances s2
k (xk) for

k = 1, 2. The first way exploits the expression of s2
k (xk) and replaces its population terms with their

nonparametric consistent estimators. The other way is to estimate s2
k (xk) by adapting the bootstrap

method for nonparametric regression. See, e.g., Härdle and Bowman (1988); Hall (1992); Hall and
Horowitz (2013), among others.

We next consider the estimation of link function G(·). Our next theorem summarizes the large sam-
ple properties of our link estimator bG(·). Let SG be the compact set {t : t = f1(x1)+ f2(x2) for some (x1, x2) 2

SX} where SX is the support of X.

Theorem 4. Let Assumptions I, A.1-A.6 hold. Then as n ! •: (i) supt2SG

�� bG(t) � G(t)
�� ! 0 in

probability, and (ii) for any t 2 SG,
p

nhG ·
� bG(t)� G(t)� BnG(t)

� d
! N

�
0, s2

G(t)
�

where BnG(t) and
s2

G(t) are defined by (S.1.3) and (S.1.4), respectively.

Theorem 4 shows the uniform convergence and asymptotic normality of our kernel estimator of link
G(·). Several remarks are in order. First, the asymptotic bias BnG(t) consists of three terms. The
first term hr+1

G e01G{S
G
r }

�1SG,r+1
r Gr+1(t) 7 comes from the infeasible estimation of link G(·) when the

(unobserved) true zk(·) and f̃k(·) for k = 1, 2, instead of their estimators, were used in the second
step to recover G(·). It is a bias term of a standard nonparametric regression. The other two terms
are the additional biases caused by using the feasible estimators bzk(·) and b̃f k(·) for k = 1, 2, instead
of their true functions, in the second step to estimate G(·). Second, similar to the case of bfk(·)’s, the
asymptotic bias is controllable under Assumption A.6. Third, our asymptotic variance s2

G(t) can be
estimated through replacing its population quantities with their consistent estimators.

5 A Simulation Study
This section demonstrates the finite sample performance of our estimator by some Monte Carlo
experiments. We adopt the following data generating process with the sample sizes of 400 and 800,
each replicated 200 times:

Y = 1{ f1(X1) + f2(X2
1, X2

2)� U > 0},

where the regressors X1, X2
1, and X2

2 are independent truncated normal on [�3, 3] with mean 0 and
standard deviation of 2, and the error term U is independent of all regressors and distributed according
to standard normal N(0, 1). The true link and component functions are specified as

G(t) = F(t), f1(x1) = x1, f2(x2
1, x2

2) = x2
1 · x2

2,

where F(·) is the distribution function of standard normal.
Two remarks are in order. First, under this specification, the partial integrals are z1(x1) = E[F(x1 +

X2
1 · X2

2)] and z2(x2
1, x2

2) = E[F(X1 + x2
1 · x2

2)], and the transformed components are the correspondent

7See (S.1.3) in the Appendix S.1.
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inverse functions with f̃1(z1(x1)) = x1 and f̃2(z2(x2
1, x2

2)) = x2
1 · x2

2. Second, the location normalization
then requires z1

0 = z1(0) and z2
0 = z2(0, 0) since f̃1(z1(0)) = 0 and f̃2(z2(0, 0)) = 0. The symmetry

of distributions of X1 and X2 implies that z1(0) = z2(0, 0) = F(0) = 0.5 which is used in the
simulation. The scale normalization holds in the model with a constant weight function w3(z1) =⇣ R 0.7

0.3
⇥

f̃ 01(z1)
⇤�1dz1

⌘�1
· 1{0.3  z1  0.7}.

We next provide the implementation details of our estimation method. Let bs(W) denote the stan-
dard error of a given random variable W. To estimate f1(·), f2(·, ·), and G(·), we use local linear regres-
sions with a second-order Gaussian kernel and the bandwidths of hH = min

�
bs(X1), bs(X2

1), bs(X2
2)
 
·

n�1/7, hH = min
�
bs(bZ1), bs(bZ2)

 
· n�1/8, and hG = bs

� bf1(X1) + bf2(X2
1, X2

2)
�
· n�1/5 following the

simplified Silverman’s rule of thumb (Silverman, 1986; Hansen, 2009). The weight function w4(·)

is chosen according to w4(z2) = 5
3 · 1{0.2  z2

 0.8}. Meanwhile, we replicate the estimators of
JLL (a.k.a. "JLL estimators" in our paper) to do a side-by-side comparison. The details are given
as follows. In the estimation of JLL, we also choose the second-order Gaussian kernel to do local
linear regressions in all stages, use linear extrapolation to extend the integrand function when we do
numerical integration and apply the silverman’s rule of thumb to pick the bandwidths. To compute
the integrals in our and JLL’s estimators, we adopt the midpoint rule to calculate them numerically.

We now show the performance of our estimators and JLL estimators of f1(·), f2(·, ·) and G(·)

to demonstrate how well our estimation procedure can recover the component and link functions
at different locations. In particular, we report the bias (Bias), the standard deviation (SD), and the
root mean square error (RMSE) for all estimators. Table 1 summarizes the simulation results for the
estimation of components f1(·), Table 2 is for f2(·, ·) and Table 3 for the estimation of link G(·). We
report in Tables 1-3 the simulation results for ours and JLL estimators at different points in the interior
of the support of each function, where the left sections display the results for our estimators and right
sections for JLL.

Table 1: Simulation results for the estimation of component function f1(x1)

ours JLL
n x1 Bias SD RMSE Bias SD RMSE

-1 0.109 0.162 0.194 0.141 0.249 0.286
400 0 -0.005 0.121 0.121 0.018 0.246 0.246

1 -0.104 0.161 0.191 -0.148 0.272 0.309
-1 0.095 0.115 0.149 0.129 0.220 0.254

800 0 0.002 0.101 0.100 -0.007 0.165 0.164
1 -0.089 0.126 0.154 -0.122 0.185 0.221

Tables 1-2 show the estimation of components f1(·) and f2(·, ·), respectively. Table 1 shows the
performance of our component estimator bf1(x1) for x1 = �1, 0, 1. They show that our estimator bf1(·)

performs reasonably well even under the moderate sample size of 400. When the sample size increases
from 400 to 800, the RMSEs of bf1(·) decline significantly. Moreover, the estimation biases are relatively
small under both sample sizes of 400 and 800. Table 2 reports the estimation results for f2(x2

1, x2
2) for

all x2
1 = �1, 0, 1 and x2

2 = �1, 1. We first look at the case of x2
2 = �1 which is shown in the upper

sections of table 2. The biases are relatively small under both n = 400 and n = 800. In addition, the
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Table 2: Simulation results for the estimation of component function f2(x2
1, x2

2)

ours JLL
n x2

1 x2
2 Bias SD RMSE Bias SD RMSE

-1 -1 -0.115 0.237 0.263 -0.107 0.346 0.361
0 -1 -0.007 0.199 0.199 0.017 0.253 0.253

400 1 -1 0.083 0.239 0.252 0.084 0.315 0.326
-1 1 0.065 0.251 0.258 0.095 0.288 0.303
0 1 -0.008 0.201 0.201 -0.006 0.248 0.248
1 1 -0.078 0.242 0.254 -0.097 0.301 0.315
-1 -1 -0.103 0.168 0.197 -0.061 0.257 0.263
0 -1 -0.005 0.151 0.151 -0.028 0.191 0.193

800 1 -1 0.086 0.182 0.201 0.030 0.245 0.247
-1 1 0.069 0.182 0.194 0.037 0.266 0.268
0 1 -0.022 0.152 0.153 0.023 0.210 0.210
1 1 -0.095 0.176 0.200 -0.056 0.267 0.273

Table 3: Simulation results for the estimation of link function G(t)

ours JLL
n t Bias SD RMSE Bias SD RMSE

-3 0.000 0.006 0.006 0.013 0.039 0.041
400 0 0.000 0.062 0.061 0.002 0.049 0.049

3 0.001 0.010 0.010 -0.016 0.045 0.047
-3 0.001 0.005 0.005 0.010 0.027 0.028

800 0 0.002 0.043 0.042 0.001 0.041 0.041
3 0.000 0.004 0.004 -0.007 0.026 0.026

decrease of RMSEs is significant when the sample size increases from 400 to 800. Our estimation of
the two-dimensional function f2(·, ·) hence performs reasonably well. We then look at the case of
x2

2 = 1 shown in the lower sections of table 2. Similar to the case of x2
2 = �1, it confirms that (i) the

biases are relatively satisfactory under both sample sizes of 400 and 800; (ii) our estimator becomes
closer to its true value as the sample size increases.

Table 3 gives the performance of our link estimator bG(t) for t = �3, 0, 3. In general our link
estimator performs relatively well, although it is given by a nonparametric regression with a regressor
generated by a two-step nonparametric estimation. The biases are reasonably small under n = 400
and n = 800. In addition, the RMSEs decrease when the sample size increases from 400 to 800.

Tables 1 - 3 also compare our results with JLL estimators. We can see that (i) our estimators have
smaller variances and RMSEs than JLL estimators with two exceptions in the estimation of f1( · ),
f2( · ) and G( · ) and (ii) our estimators have biases in a magnitude similar to JLL. Thus, our estimators
perform well in finite sample even though we do not require the existence of an univariate component
like JLL.
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Table 4: Simulation results for the estimation of original regression function H(x1, x2
1, x2

2)

ours JLL Pinkse (2001)
x1 x2

1 x2
2 Bias SD RMSE Bias SD RMSE Bias SD RMSE

n = 400
-1 -1 -1 -0.004 0.095 0.095 0.012 0.109 0.109 -0.012 0.105 0.106
0 -1 -1 -0.046 0.076 0.089 -0.081 0.102 0.130 -0.075 0.071 0.103
1 -1 -1 -0.024 0.036 0.043 -0.073 0.082 0.110 -0.049 0.034 0.060
-1 0 -1 0.039 0.073 0.083 0.101 0.095 0.138 0.052 0.062 0.081
0 0 -1 -0.004 0.084 0.084 0.014 0.106 0.106 0.003 0.079 0.079
1 0 -1 -0.045 0.070 0.083 -0.092 0.100 0.135 -0.057 0.061 0.083
-1 1 -1 0.020 0.039 0.044 0.068 0.065 0.094 0.050 0.035 0.061
0 1 -1 0.035 0.075 0.082 0.093 0.097 0.134 0.078 0.073 0.107
1 1 -1 -0.010 0.093 0.094 -0.010 0.108 0.108 0.008 0.107 0.107
-1 -1 1 0.019 0.038 0.042 0.068 0.063 0.093 0.050 0.033 0.060
0 -1 1 0.031 0.072 0.078 0.095 0.088 0.129 0.078 0.075 0.109
1 -1 1 -0.016 0.098 0.099 -0.007 0.092 0.092 0.007 0.100 0.100
-1 0 1 0.040 0.072 0.082 0.096 0.089 0.131 0.054 0.060 0.081
0 0 1 -0.004 0.087 0.087 0.008 0.096 0.096 0.004 0.078 0.078
1 0 1 -0.046 0.074 0.087 -0.095 0.095 0.134 -0.055 0.058 0.080
-1 1 1 0.011 0.092 0.093 0.011 0.101 0.101 -0.016 0.115 0.116
0 1 1 -0.036 0.079 0.086 -0.082 0.092 0.122 -0.078 0.075 0.108
1 1 1 -0.021 0.038 0.043 -0.075 0.079 0.108 0.051 0.036 0.062

n = 800
-1 -1 -1 0.001 0.070 0.070 0.020 0.092 0.094 0.000 0.088 0.088
0 -1 -1 -0.034 0.059 0.068 -0.066 0.081 0.105 -0.065 0.058 0.088
1 -1 -1 -0.018 0.032 0.037 -0.048 0.048 0.048 0.042 0.026 0.049
-1 0 -1 0.036 0.060 0.069 0.072 0.085 0.111 0.056 0.049 0.074
0 0 -1 -0.001 0.065 0.064 -0.008 0.090 0.090 0.003 0.065 0.065
1 0 -1 -0.033 0.058 0.066 -0.083 0.075 0.112 -0.048 0.048 0.068
-1 1 -1 0.018 0.032 0.037 0.050 0.066 0.083 0.044 0.026 0.052
0 1 -1 0.034 0.059 0.068 0.057 0.078 0.096 0.068 0.060 0.091
1 1 -1 0.001 0.075 0.074 -0.026 0.082 0.085 0.005 0.081 0.081
-1 -1 1 0.016 0.028 0.032 0.051 0.064 0.082 0.046 0.028 0.054
0 -1 1 0.031 0.061 0.069 0.061 0.078 0.099 0.071 0.061 0.093
1 -1 1 -0.005 0.077 0.077 -0.021 0.086 0.078 0.008 0.085 0.085
-1 0 1 0.031 0.055 0.063 0.085 0.090 0.123 0.057 0.045 0.072
0 0 1 -0.007 0.068 0.068 0.006 0.089 0.089 0.005 0.066 0.066
1 0 1 -0.038 0.059 0.070 -0.072 0.073 0.103 -0.047 0.049 0.067
-1 1 1 0.003 0.073 0.072 0.025 0.098 0.101 -0.004 0.088 0.088
0 1 1 -0.033 0.061 0.069 -0.064 0.084 0.106 -0.068 0.059 0.090
1 1 1 -0.018 0.032 0.032 -0.049 0.052 0.072 -0.043 0.025 0.050
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We also compare our method with Pinkse (2001) in finite sample before concluding our simulation
section. In the context of Pinkse (2001), the above model can be represented as

H(x1, x2) = G̃
�

x1, f̃2(x2)
�

where H(x1, x2
1, x2

2) = F(x1 + x2
1x2

2), f̃2(x2) = x2
1x2

2 and G̃(x1, t) = F(x1 + t). The estimation of H(·)

is the object of comparison here. To implement his approach, we apply local linear method for the
first-step estimation and a weighted local constant regression for the second-step estimation. The
second-step estimation closely follows the definition of his estimator. We also use the second order
Gaussian kernel and bandwidths following the rule of thumb. The weight is chosen according to the
simulation study of Pinkse (2001). We report the simulation results of his third estimator, namely Sp ,
here.

Table 4 shows the simulation results for ours, JLL and Pinkse’s estimators of the overall function
H(x1, x2

1, x2
2) under sample sizes 400 and 800. The comparison shows that (i) the RMSEs of our

estimator decline significantly when the sample size increases from 400 to 800; (ii) our estimator has
smaller variances and RMSEs than both of JLL and Pinkse (2001)’s estimators in most cases; (iii) our
biases are comparable to the best ones between JLL and Pinkse (2001).

6 Extensions

6.1 Discrete covariates
We now turn to the case with discrete covariates in (x1, x2). Let Xk = (Xk

d, Xk
c ) with discrete regressors

Xk
d 2 Rak (ak � 1) and continuous regressors Xk

c 2 Rbk (bk � 1) for k = 1, 2.
With mixed data of discrete and continuous regressors, our transformation and identification

results, namely Theorems 1 and 2, still hold under proper choices of weight functions wk(·) for
k = 1, . . . , 4 and proper definition of integration with respect to discrete variables. We follow Li and
Racine (2007) to accommodate both discrete and continuous regressors in our estimation. We mainly
need to modify the kernel regression estimators of ẑk(xk) for k = 1, 2 and bH�j(x) in Step 1 (outlined
in Section 3) as follows:

bz1(x1) =
1
n

n

Â
j=1

bH�j
�
x1, X2

j
�
, bz2(x2) =

1
n

n

Â
j=1

bH�j
�
X1

j , x2�,

where bH�j
�

x
�

comes from the intercept of a leave-one-out local polynomial estimation

min
a Â

i 6=j

�
Yi � Â

0|k|r
ak(Xci � xc)

k�2KhH ,l(x, Xi),

where k = (k1, k2, . . . , kb1+b2), KhH ,l(x, X) = Pb1
`=1k

� x1
c`�X1

c`
hH

�
·Pb2

`=1k
� x2

c`�X2
c`

hH

�
·Pa1

`=1l
N1
` (x,X)

1` ·Pa2
`=1l

N2
` (x,X)

2`
and Nk

` (x, X) = 1{Xk
d` 6= xk

d`}. Here, we use a multiplicative kernel function for the multivariate
regressors. A univariate kernel of k(·) is adopted for the continuous regressors, and another univariate

kernel of l(Xk
d`, xk

d`, lk`) = l
1{Xk

d` 6=xk
d`}

k` is employed for the discrete (and unordered) regressors with a
bandwidth lk` 2 [0, 1].8

8If the discrete regressors are ordered, then a univariate kernel of l(Xk
d`, xk

d`, lk`) = l
|Xk

d`�xk
d` |

k` can be applied in this case. See
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With the above adaption in our estimation (to accommodate the mixed data of discrete and
continuous regressors), we can obtain the large sample properties of bfk(·) for k = 1, 2 and bG(·) similar
to those summarized by Theorems 3 and 4. In particular, the asymptotic variance of bfk(·) has an order
of O

�
1
�
(nhbk

H )
�

instead of O
�
1
�
(nhdk

H )
�

where bk < dk.

6.2 Multiple component functions
We next briefly discuss the extension of our method from the baseline model with two components to
the case with more than two components.

Let K > 2. For any k = 2, . . . , K, let Hk(x1, xk) =
R

H(x) · pX̃�k (x̃�k) dx̃�k where X̃�k is obtained
by excluding X1 and Xk from X, and x̃�k is obtained by excluding x1 and xk from x. This constructed
Hk(x1, xk) is identified if the original H(x) is identified. We can transform the original model (2) with
K components into the following new model with two components as

Hk(x1, xk) = Gk( f1(x1) + fk(xk)), (9)

where Gk(t) =
R

G
�
t � fk(xk) + ÂK

`=2 f`(x`)
�
· pX̃�k (x̃�k)dx̃�k is monotonic if the original link func-

tion G(·) is monotonic.
Our previous idea can be applied directly to the new model (9) to identify f1(·) and fk(·). Specifi-

cally, for any k = 2, . . . , K, we use an idea similar to Theorem 1 to transform the new model (9) into
the following model with two univariate components:

Hk(z1, zk) = Gk( f̃1(z1) + f̃k(zk)), (10)

where Hk(z1, zk) = E[Hk(X1, Xk)|z1(X1) = z1, zk(Xk) = zk], the inverse of f̃`(·) is f̃�1
` (s) =R

Gk(s + f�`(x�`)) · w�`(x�`)dx�`, and z`(x`) =
R

Hk(x1, xk) · w�`(x�`)dx�` with freely chosen
weight functions w�`(·) for ` = 1, k where x�` is xk if ` = 1 and is x1 if ` = k. The trans-
formed components f̃1(·) and f̃k(·) can then be identified by ( C1) and (C2), respectively, where
H(·) is replaced by Hk(·). The original components are identified as fk(xk) = f̃k(zk(xk)) for all
k = 1, . . . , K. Once all of fk(·), k = 1, . . . , K, are identified, the original link G(·) is identified by
G(t) = E

⇥
H(X)

��ÂK
k=1 fk(Xk) = t

⇤
.

Similar to the case with two components (i.e. K = 2), we can closely follow the above identification
strategy to estimate the link G(·) and the components f`(·) in three steps for ` = 1, . . . , K. Let k =

2, . . . , K. In the first step, we estimate the transformed function Hk(z1, zk) by the nonparametric sample
analogue of its definition as bE[Hk(X1, Xk)|bz1(X1) = z1, bzk(Xk) = zk] where Hk(x1, xk) =

R
H(x) ·

pX̃�k (x̃�k) dx̃�k and bz`(X`)’s are also given by the sample analogues of z`(X`) =
R

Hk(X1, Xk) ·

w�`(X�`)dX�` for ` = 1, k. Given the first-step estimator bHk(z1, zk), the second step follows Horowitz
(2001)’s estimation procedure to estimate the transformed components f̃1(·) and f̃k(·) according to
(C1) and (C2), respectively, with H(·) replaced by Hk(·) in the transformed model (10). Moreover, the
link G(·) is recovered by bG(t) = bE

⇥
Y
��ÂK

`=1
b̃f `(bz`(X`)) = t

⇤
. In step three, the original components

are then recovered by bf`(·) = b̃f `(bz`(·)) for ` = 1, . . . , K. Note that we will obtain (K � 1) estimates
for the first component f1(·). We hence aggregate them by their average to estimate f1(·).

Li and Racine (2007) for more details.
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7 Conclusion
In this paper, we consider estimating the generalized additive model with a flexible grouping and
unknown link. To identify the model primitives, we transform the model into a new model with
univariate components. We then identify the new model by applying the existing strategy for the
generalized additive model with univariate components. Closely following the identification strategy,
we propose a three-step procedure to estimate the link and original components. The consistency and
asymptotic normality are then established for the link estimator at a one-dimensional convergence rate
and for the component estimators at the convergence rates corresponding to their own dimensions.

This paper adopts a multi-step kernel method to estimate the component and link functions
in the generalized additive model with a flexible additive structure and unknown link. Hahn,
Liao, and Ridder (2018) studied nonparametric two-step sieve M estimation in a general class of
semi/nonparametric models. As sieve method is convenient to implement in practice, it is interesting
to use a multi-step sieve method to estimate the component and link functions in our framework.
This is an interesting topic for future research.

Appendix

Appendix A proves the theorems given in the text. Appendix S.1 of Supplementary Material (SM)
introduces some notations for the convenience of discussion in the text and proofs. All of technical
lemmas are stated and shown in the Appendix S.2 of SM.

A Proofs of Theorems

A.1 Proof of Theorem 1
Proof. By definition, for k = 1, 2, we have

zk(xk)=
Z

H(x)w�k(x�k)dx�k =
Z

G
�

f1(x1) + f2(x2))w�k(x�k�dx�k =dk
�

fk(xk)
�
, (A.1)

where the second equality comes from the model restriction (M). Here, the dependence of dk(·)

on the function f�k(·) is abbreviated for simplicity of notation. It is easy to verify that dk(·) is
strictly monotonic and hence has an inverse function d�1

k (·) if G(·) is strictly monotonic. Thus
fk(xk) = d�1

k (zk(xk)). Because H(z) = E[H(X)|z1(X1) = z1, z2(X2) = z2] by definition, it follows
that

H(z) = E
⇥
G
�

f1(X1) + f2(X2)
����z1(X1) = z1, z2(X2) = z2⇤

= E
⇥
G
�
d�1

1 (z1(X1)) + d�1
2 (z2(X2))

����z1(X1) = z1, z2(X2) = z2⇤

= G
�
d�1

1 (z1) + d�1
2 (z2)

�
.

The desired conclusion is therefore established by letting f̃k(zk) = d�1
k (zk) for k = 1, 2.
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A.2 Proof of Theorem 3

Proof. Only the case for k = 2 is proved. The proof for k = 1 is similar. The definition of bf2(x2) gives
the following decomposition:

bf2
�
x2�

� f2
�

x2� =
⇥b̃f 2
�bz2
�
x2��

� f̃2
�bz2
�

x2��⇤+
⇥

f̃2
�bz2
�
x2��

� f̃2
�
z2
�

x2��⇤, (A.2)

where both terms on the right hand side of equality converge to 0 uniformly over x2
2 SX2 in

probability by Lemmas S.3 and S.6. Part (i) is hence established. The rest of proof is to show part (ii).
The first term on the right hand side of (A.2) can be simplified as

b̃f 2
�bz2
�
x2��

� f̃2
�bz2
�
x2�� = b̃f 2

�
z2
�
x2��

� f̃2
�
z2
�
x2��+ Op

�
xH2(x

0

H
+ xH1)

�
, (A.3)

uniformly over x2 as n ! •, where the third (remaining) term on the right hand side is due to
R bz2(x2)

z2(x2)

R ⇥ ∂2 bH(z)
∂1 bH(z)

�
∂2H(z)
∂1H(z)

⇤
w3(z1)dz1dz2 = Op

�
xH2(x 0H + xH1)

�
which is derived by applying a Taylor

expansion similar to (S.2.17) on the (unweighted) integrand and Lemmas S.3 and S.5. Take a Taylor
expansion to the second term on the right hand side of (A.2) to obtain

f̃2
�bz2
�

x2��
� f̃2

�
z2
�
x2�� = f̃ 02

�
z2
�
x2���bz2

�
x2�

� z2
�

x2��+ Op

⇣
x2

H2

⌘
,

uniformly over x2 as n ! •. Consequently, with bandwidths satisfying Assumption A.6, the
asymptotic representations of b̃f 2(·) given by Lemma S.6 and bz2(·) given by Lemma S.3 imply that

bf2(x2)� f2(x2) = f̃ 02(z2(x2)) · Jn2(x2) + J̃n2(z2(x2))� E[J̃n2(z2(x2))]

+ hr+1
H
⇥

f̃ 02(z2(x2))D2(x2) + B̃2(z2(x2))
⇤
+ hr

H
B2(z2(x2)) + op(hr

H
+ hr+1

H ), (A.4)

uniformly over x2 as n ! •. The asymptotic normality of part (ii) then follows by applying the
Lindeberg-Feller central limit theorem (see Theorem 7.2.1 of Chung, 2001) to (A.4). The asymptotic bias

is an immediate consequence of (A.4), and the asymptotic variance Var
⇣q

nhd2
H ·

h
f̃ 02(z2(x2))Jn2(x2) +

J̃n2(z2(x2))
i⌘

= s2
2 (x2) + o(1) is obtained by a calculation similar to the one of asymptotic variance

of a kernel density estimator. This completes the whole proof.

A.3 Proof of Theorem 4
Proof. For any i = 1, . . . , n, let T = T(x) = f1(X1) + f2(X2), Ti = T(Xi) = f1(X1

i ) + f2(X2
i ), bTi =

bT(xi) = bf1i(X1
i ) +

bf2i(X2
i ), and pT(·) be the probability density function of T, where bfki(·) is the

estimator of fk(·) leaving observation i out for k = 1, 2. Since we have supx2SX

��bT(x)� T(x)
�� similar

to Lemma S.4, we can derive the asymptotic representation for any t 2 SG,

bG(t)� G(t)

=
1

nhG

n

Â
i=1

e01GS
G
n,r(t)

�1k
⇣Ti � t

hG

⌘n
Yi � µG(Ti � t)0bG(t)

o
µG

⇣Ti � t

hG

⌘
+

1
nh2

G

n

Â
i=1

e01GS
G
n,r(t)

�1
·

"⇣ ∂

∂u
tG(u, Yi; t)k(u) + tG(u, Yi; t)k0(u)

⌘���
u= Ti�t

hG

#
·
�bT(Xi)� Ti

�
+ op

⇣
hr+1

G +
q

log(n)/(nhG)
⌘
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=:G1n(t) + G2n(t) + op

⇣
hr+1

G +
q

log(n)/(nhG)
⌘

(A.5)

uniformly over t 2 SG as n ! •, where tG(u, Yi; t) = µG(u)
�
Yi � µ(u)0BhG bG(t)

�
. The first term

G1n(t) is the uniform Bahadur representation for local polynomial regression in Kong, Linton, and
Xia (2010). The second term G2n(t) represents the error caused by using generated regressor bTi. Thus,
we have the uniform convergence of supt2SG

�� bG(t)� G(t)
�� and thus part (i) is proved. Similar to

Lemma S.5, G1n(t) can be decomposed into a bias leading term and a stochastic leading term, i.e.9

G1n(t) =
1

nhG

n

Â
i=1

e01G{S
G
r }

�1 Yi � G(Ti)
pT(t)

µG

⇣Ti � t

hG

⌘
k
⇣Ti � t

hG

⌘
+ B0(t) + RGn, (A.6)

where RGn = op
�
hr+1

G +
p

1/(nhG)
�
, and B0(t) = e01G{S

G
r }

�1SG,r+1
r Gr+1(t) · hr+1

G . As for G2n(t), we
can further decompose as under Assumption A.6,

G2n(t) =
1

nh2
G

n

Â
i=1

e01G{S
G
r }

�1 pT(t)
�1B1(Ti, Yi, t) ·

⇣
E[bT(Xi)|Xi]� Ti

⌘
+

1
nh2

G

n

Â
i=1

e01G{S
G
r }

�1
·

pT(t)
�1B1(Ti, Yi, t) ·

⇣
bT(Xi)� E[bT(Xi)|Xi]

⌘
+ op

⇣
hr+1

G + hr+1
H + hr

H
+
q

1/(nhG)
⌘

=: G21n(t) + G22n(t) + op

⇣
hr+1

G + hr+1
H + hr

H
+
q

1/(nhG)
⌘

, (A.7)

where B1(Ti, Yi, t) =
⇣

∂
∂u tG(u, Yi; t)k(u)+ tG(u, Yi; t)k0(u)

⌘���
u= Ti�t

hG

, E[bT(Xi)|Xi]�Ti = Â2
k=1 Bn f k(Xk

i ) =

Â2
k=1

�
hr
H
Bk(zk(Xk

i ))+ hr+1
H
⇥

f̃ 0k(zk(Xk
i ))Dk(Xk

i )+ B̃k(zk(Xk
i ))
⇤ 

and bT(Xi)�E[bT(Xi)|Xi] = Â2
k=1

�
f̃ 0k(zk(Xk

i )) ·

Jnk(Xk
i ) + J̃nk(zk(Xk

i ))� E[J̃nk(zk(Xk
i ))|Xi]

�
. G21n(t) is the additional bias due to the generated re-

gressor bT(Xi). Similar to the arguments in (S.2.13) of Lemma S.5, we get

G21n(t) =� e01G{S
G
r }

�1pT(t)
�1 1

hG

Z
µG
�T�t

hG

�
k
�T�t

hG

�
G0(T)·E

⇥ 2

Â
k=1

Bn f k(Xk
i )
��Ti = T

⇤
pT(T)dT+R0n

=�G0(t)·E
h 2

Â
k=1

�
hr
H
Bk(zk(xk))+hr+1

H
⇥

f̃ 0k(zk(xk))Dk(xk)+B̃k(zk(xk))
⇤ ���TI =t

i
+R0n, (A.8)

where R0n = op(hr+1
H + hr

H
) , and the last equality is due to (i) change of variables, (ii) Taylor expansion,

and (iii) the fact that e01G{S
G
r }

�1 R µG(u)k(u)du = e01Ge1G = 1.
Next consider G22n(t). It represents the additional stochastic term induced by bT(Xi). Similar to

Lemma S.5, under Assumption A.6, G22n(t) can be written as

G22n(t) =� e01G{S
G
r }

�1 pT(t)
�1 1

nhG

n

Â
i=1

µG

⇣Ti � t

hG

⌘
k
⇣Ti � t

hG

⌘
G0(Ti)

·

2

Â
k=1

�
f̃ 0k(zk(Xk

i )) · Jnk(Xk
i ) + J̃nk(zk(Xk

i ))� E[J̃nk(zk(Xk
i ))|Xi]

�
+ R1n, (A.9)

where R1n = op
�
hr+1

G + hr+1
H + hr

H
+
p

1/(nhG)
�
. Follow the U-Statistics arguments similar to Lemma

9Here, We derive a weaker, point-wise representation rather than the uniform representation in Lemma S.5.
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8 of Horowitz (1998)10, (A.9) can be represented as

G22n(t) =e01G{S
G
r }

�1�
Z

µG(u)k(u)du
�
G0(t)

2

Â
k=1

{G22n,k(t)�E[G22n,k(t)]+eG22n,k(t)�E[eG22n,k(t)]}+R1n

=G0(t)
2

Â
k=1

G22n,k(t) + G0(t)
2

Â
k=1

eG22n,k(t) + R1n

for all t 2 SG, where G22n,k(t) =
1

nhH Ân
i=1 c2�kw5�k(Z�k

i )qk(Z
0
ki)

0e0dS̃�1
r Vµ̃

k

⇣
Zk

i �zk
0

hH

⌘
Yi�H(Zi)

pZ(Z
0
ki)

Kk
� zk

0�Zk
i

hH

�
,

eG22n,k(t) = �
1
n Ân

i=1 f̃ 0k
�
zk(Xk

i )
� pX1 |T(Xk

i |t)

pXk |X�k (Xk
i |X

�k
i )

�
Yi � H(Xi)

�
, and E[G22n,k(t)] = E[eG22n,k(t)] = 0.

G22n,k(t) is the stochastic term due to the estimation of f̃k( · ), i.e. J̃nk(zk(Xk
i )), and has a order

of Op(1/
p

nhH). eG22n,k(t) is induced by the estimation of zk(Xk
i ), i.e. f̃ 0k(zk(Xk

i )) · Jnk(Xk
i ) with a

variance of order O(1/
p

n). Therefore, eG22n,k(t) is of smaller order than G22n,k(t) and we conclude
that

G22n(t) = G0(t)
2

Â
k=1

G22n,k(t) + R1n. (A.10)

By combining the bias leading terms of (A.6) and (A.8), the asymptotic bias of bG(t) can be established.
By the stochastic parts of (A.6) and (A.10), the asymptotic normality and correspondent variance
follow from Lindeberg-Feller central limit theorem. This complete the whole proof.

10Note that we use our Lemma S.1 instead of Horowitz (1998)’s Lemma 5 to characterize the projection error of U-statistics.
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Supplementary material to “Nonparametric identification and estimation of a
generalized additive model with a flexible additive structure and unknown link”

Songnian Chen, Nianqing Liu, Jian Zhang, and Yahong Zhou

Abstract

The supplementary material includes two appendices. Appendix S.1 introduces some notations
for the convenience of discussion in the text and proofs. Appendix S.2 states and proves some
technical lemmas needed to show the main theorems in the text.

S.1 Notations

S.1.1 Local polynomial Regression
For r-th order local polynomial regression of Yi on Xi, let j = (j1, j2, · · · jd) be an arbitrary d-tuple
of integers, denote |j| = j1 + j2 + · · ·+ jd, j! = j1! ⇥ j2! ⇥ · · ·⇥ jd!, xj = (x1)j1 ⇥ (x2)j2 ⇥ · · · (xd)jd ,

DjH(x) = ∂|j|H(x)
∂(x1)j1 ∂(x2)j2 ···∂(xd)jd

, and Â0|j|r = Âr
k=0 Âj1+j2+···+jd=k . The total number of d-tuples with

|j| = s is Ms =

 
r + d � 1

d � 1

!
. We arrange these tuples in an ascending lexicographical order style as

in Masry (1996)11. The correspondent position of each tuple forms a one-to-one map which is called
ps, i.e. ps(1) = (s, 0, 0, · · · , 0), ... ps(Ms) = (0, 0, · · · , 0, s). Denote a vector-value function µ( · ) for
an arbitrary entry x 2 Rd such that µs(x) is a Ms ⇥ 1 vector with l-entry given by

h
µs(x)

i

l
= xps(l).

and we stack these vectors and define a Nr ⇥ 1 vector as µ(x) = [µ0(x), µ1(x), · · · , µr(x)]0, where
Nr = M0 + M1 + · · · + Mr. Also, we denote Ms ⇥ 1 vectors Hs(x) (s = 0, 1, . . . , r + 1) to store
H(x) and its derivatives (up to (r + 1)-th order) such that the l-entry of as(x) equals to

h
Hs(x)

i

l
=

1
ps(l)!

Dps(l)H(x), and a(x) stacks as(x) (s = 0, 1, . . . , r.) as a(x) = [H0(x), H1(x), · · · , Hr(x)]0, then
µ(y � x)0a(x) is the r-th order Taylor expansion of H(y) at x. Let Sn,p,q(x) and Sp,q be Mp ⇥ Mq

matrices with (l, k)-element given by
⇥
Sn,p,q(x)

⇤
l,k =

R
upp(l)+pq(k)K(u)pX(x+ hHu)du and

⇥
Sp,q

⇤
l,k =R

upp(l)+pq(k)K(u)du, where u = (u1, u2, · · · , ud), K(u) = K1(u1)K2(u2) with u1 = (u1, · · · , ud1) and
u2 = (ud1+1, · · · , ud), and pX( · ) is the probability density function of X. Define Nr ⇥ Nr matrices
Sn,r(x) and Sr as

Sn,r(x) =

0

BBBB@

Sn,0,0(x) Sn,0,1(x) · · · Sn,0,r(x)
Sn,1,0(x) Sn,1,1(x) · · · Sn,1,r(x)

...
...

. . .
...

Sn,r,0(x) Sn,r,1(x) · · · Sn,r,r(x)

1

CCCCA
, Sr =

0

BBBB@

S0,0 S0,1 · · · S0,r

S1,0 S1,1 · · · S1,r
...

...
. . .

...
Sr,0 Sr,1 · · · Sr,r

1

CCCCA
,

and Nr ⇥ Mr+1 matrices Sr+1
n,r (x) and Sr+1

r as Sr+1
n,r (x) =

�
Sn,0,r+1(x)0, Sn,1,r+1(x)0, · · · , Sn,r,r+1(x)0

�0

and Sr+1
r =

�
S0

0,r+1, S0

1,r+1, · · · , S0

r,r+1
�0. For r-th order local polynomial regression of Yi on Zi = z(Xi),

similarly, for each 2-tuple j̃ = (j1, j2), we can define summation, factorial operation, multiplication and
partial derivatives. In the same style as Ms, Nr, ps( · ), we can define M̃s, Ñr, and the lexicographical

11The highest priority of the order is based on j1, second we order by j2, so on and so forth, finally we order by jd.
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order map ts( · ). Similar to µ( · ), Sn,p,q(x), Sp,q, Sn,r(x), and Sr, we can define µ̃( · ), S̃n,p,q(z), S̃p,q,
S̃n,r(z), and S̃r with z = (z1, z2). Let Sn,p,q(z, z) be a M̃p ⇥ M̃q matrix with (l, k)-element defined by
⇥
Sn,p,q(z, z)

⇤
l,k = 1

nh2
H

Ân
i=1

⇣
z(Xi)�z

hH

⌘tp(l)+tq(k)
K̃
⇣

z(Xi)�z
hH

⌘
, and Qn,p,0(z, z) be a M̃p ⇥ 1 vector with

k-th entry given by
⇥
Qn,p,0(z, z)

⇤
k = 1

nh2
H

Ân
i=1 Yi

⇣
z(Xi)�z

hH

⌘tp(k)
K̃
⇣

z(Xi)�z
hH

⌘
, where z = (z1, z2), z =

(z1, z2), z(Xi) = (z1(X1
i ), z2(X2

i )), and K̃(u) = k1(u1)k2(u2). Also, we define the kernel derivatives
∂kK̃(u) = k0k(u

k)k�k(u�k) for k = 1, 2. By stacking Sn,p,q(z, z) and Qn,p(z, z), we define a Ñr ⇥ Ñr

matrix Sn,r(z, z) and a Ñr ⇥ 1 vector Qn,r(z, z) as

Sn,r(z, z) =

0

BBBB@

Sn,0,0(z, z) Sn,0,1(z, z) · · · Sn,0,r(z, z)

Sn,1,0(z, z) Sn,1,1(z, z) · · · Sn,1,r(z, z)
...

...
. . .

...
Sn,r,0(z, z) Sn,r,1(z, z) · · · Sn,r,r(z, z)

1

CCCCA
,Qn,r(z, z) =

2

66664

Qn,0,0(z, z)

Qn,1,0(z, z)
...

Qn,r,0(z, z)

3

77775
.

Then infeasible local polynomial estimator is b̃(z) = B�1
H

Sn,r(z, z)�1
Qn,r(z, z) with unknown parame-

ter z( · ), and correspondent feasible estimator is bb(z) = B�1
H

Sn,r(z, bz)�1
Qn,r(z, bz), where BH is a Ñr ⇥

Ñr diagonal matrix with diagonal vector Dh = [Dh,0, Dh,1, · · · , Dh,r]
0 and Dh,s =

�
h|t(k)|
H

�
k=1,2,...,M̃s

.
In order to represent the first-order derivatives of H(z) by b(z), we introduce a Ñr ⇥ 2 vector

given by ed =

 
0 1 0 0 · · · 0
0 0 1 0 · · · 0

!0

, then
�
∂1H(z), ∂2H(z)

�0
= e0db(z). For r-th local polynomial

regression of Yi on Ti = f1(X1
i ) + f2(X2

i ). Similar to µ( · ), Sn,r(x), and Sr, we can also define µG( · ),
SG

n,r(t), and SG
r .

S.1.2 Convergence rates, bias and variance terms
For k = 1, 2,

Bn fk (xk) =hr
H
Bk(zk(xk)) + hr+1

H
⇥

f̃ 0k(zk(xk))Dk(xk) + B̃k(zk(xk))
⇤
, (S.1.1)

s2
k (xk) = f̃ 0k(zk(xk))2

·

h Z �
e01S�1

r Vµ
k (t)

�2Kk(t)2dt
i Z E

⇥�
Y � H(x)

�2��X = x
⇤

pXk |X�k (xk|x�k)2 · pX(x)dx�k, (S.1.2)

BnG(t) =hr+1
G e01G{S

G
r }

�1SG,r+1
r Gr+1(t)

� hr+1
H G0(t)

2

Â
k=1

E
⇥

f̃ 0k(zk(Xk))Dk(Xk) + B̃k(zk(Xk))
��T = t

⇤

� hr
H

G0(t)
2

Â
k=1

E
⇥
Bk(zk(Xk))

��T = t
⇤
, (S.1.3)

s2
G(t) =

Var(Y|T = t)
pT(t)

Z �
e01G{SG

r }
�1µG(u)

�2k(t)2dt + dG · s2
G2(t), (S.1.4)

s2
G2(t) =G0(t)2

2

Â
k=1

Z
c2(2�k)w5�k(Z�k

i )2

·

(Z �
qk(Z

0
ki)

0e0dS̃�1
r Vµ̃

k (t)
�2
Kk(t)2dt

)
·

Var(Y|Z = Z
0
ki)

pZ(Z0
ki)

dZ�k
i ,

(S.1.5)
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Jnk(xk) =
1

nhdk
H

n

Â
i=1

Kk
�Xk

i � xk

hH

�
·

Yi � H(xi)

pXk |X�k (xk|X�k
i )

e01S�1
r Vµ

k

⇣Xk
i �xk

hH

⌘
, (S.1.6)

Dk(xk) =e01S�1
r Sr+1

r

Z
Hr+1(xk, x�k)pX�k (x�k)dx�k, (S.1.7)

J̃nk(zk) =
c2�k

nhH

n

Â
i=1

w5�k(Z�k
i )

"
qk(Zki)

0e0dS̃�1
r

Yi � H(Xi)
pZ(Zki)

Vµ̃
k

⇣ zk(Xk
i )� zk

hH

⌘
Kk
� zk

� zk
�
Xk

i
�

hH

�

� qk(Z
0
ki)

0e0dS̃�1
r

Yi � H(Xi)

pZ(Z0
ki)

Vµ̃
k

⇣ zk(Xk
i )� zk

0
hH

⌘
Kk
� zk

0 � zk
�
Xk

i
�

hH

�
#

Bk
�
zk� =c2�k

Z zk

zk
0

Z
qk(n)

0D(n)w5�k
�
n�k�dn�kdnk,

B̃k
�
zk� =c2�k

Z zk

zk
0

Z
qk(n)

0
D(n)w5�k

�
n�k�dn�kdnk,

D(z) =e0dS̃�1
r S̃r+1

r Hr+1(z),

D(z) =ẽ1D1(z) + ẽ2D2(z),

where c =
R

w3
�
z1�

·

h R ⇥
∂1H(z)

�
∂2H(z)

⇤
· w4

�
z2�dz2

i�1
dz1, Vµ

k (u
k) =

R
µ(uk, t�k)K�k(t�k)dt�k,

Vµ̃
k (ũ

k) =
R

µ̃(ũk, t̃�k)k�k(t̃�k)dt̃�k, T = f1(X1) + f2(X2), X1i = (x1, X2
i ), X2i = (X1

i , x2), Z1i =

(z1, Z2
i ), Z2i = (Z1

i , z2), Z0
1i = (z1

0, Z2
i ), Z

0
2i = (Z1

i , z2
0), KK(uk) =

R uk

�• kk(tk)dtk, xk
s denotes the

s-th element of xk, e1 = (1, 0, 0, . . . , 0)0 is a Nr ⇥ 1 vector, e1G = (1, 0, 0, . . . , 0)0 is a (r + 1)⇥ 1 vector,

ẽ1 = (1, 0)0, ẽ2 = (0, 1)0, q2(n) =
h
�

∂2H(n)
[∂1H(n)]2

, 1
∂1H(n)

i0
, q1(n) =

h
1

∂2H(n) , � ∂1H(n)
[∂2H(n)]2

i0
, and

Dk(z) =� pZ(z)�1 ∂

∂zk

(
2

Ầ
=1

∂

∂z`
H(z)

Z
D`(x`)pX` |Z(x`|z)dx` · pZ(z)

)
,

where Dk(xk) are given by (S.1.7), respectively.

Furthermore, let xH = hr+1
H +

q
log(n)

��
nhd

H
�
, xH = hr+1

H
+
q

log(n)
��

nh2
H

�
, x 0

H
= hr

H
+

q
log(n)

��
nh4

H

�
, and xHk = hr+1

H +
q

log(n)
��

nhdk
H
�

for k = 1, 2. Let SZ be a compact set range
of {(z1, z2) : z1 = z1(x1) and z2 = z2(x2) for some (x1, x2) 2 SX}, and SZk be a compact set range of
{zk : zk = zk(xk) for some xk

2 SXk} for k = 1, 2.

S.2 Technical Lemmas
We state and show in this section the lemmas used to prove the theorems in the text.

S.2.1 Lemma S.1
Lemma S.1 modifies Lemma 3.1 of Powell, Stock, and Stoker (1989) and Lemma 5 of Horowitz
(1998). It provides sufficient conditions for approximation error of U-statistic projection other than
op(1/

p
n). In particular, it degenerates to the case of Lemma 3.1 of Powell, Stock, and Stoker (1989)

when ln = n. Denote Un = 2 · [n(n � 1)]�1 Ân�1
i=1 Ân

j=i+1 qn(Wi, Wj) and bUn = E[qn(W1, W2)] +

(2/n)Ân
i=1
�
E[qn(Wi, Wj)|Wi]� E[qn(W1, W2)]

�
. As a matter of fact, Lemma S.1 can be further modi-

fied as bUn � Un = Op

h
n�1

·

q
E
⇥
qn(W1, W2)2

⇤i
by its proof.

Lemma S.1. Suppose that {Wi}
n
i=1 is a sequence of independently and identically distributed random variables

3



or vectors. Let qn(·, ·) be a symmetric function, and ln be a sequence of positive scalars. If E[qn(W1, W2)2] =

o(ln), then bUn � Un = op
⇥p

ln
�

n
⇤
.

Proof. Follow the same idea as the proof of Lemma 3.1 of Powell, Stock, and Stoker (1989) to
get E( bUn � Un)2 = O

h
n�2

· E
⇥
qn(W1, W2)2⇤

i
. Thus (n2�ln) · E( bUn � Un)2 = O

h
(n2�ln) · n�2

·

E
⇥
qn(W1, W2)2⇤

i
= o(1). The desired conclusion therefore holds by Markov’s inequality.

S.2.2 Lemma S.2
Lemma S.2 finds the uniform convergence rate and asymptotic representation of the nonparametric
regression estimator bH(·). We give a proof of Lemma S.2 for completeness.

Lemma S.2. Let Assumptions A.1-A.5 hold, and the bandwidth hH satisfy (i) hH ! 0 and (ii) log(n)
��

nhd
H
�
!

0 as n ! •. Then
sup
x2SX

�� bH(x)� H(x)
�� = O

�
xH
�

in probability as n ! •. Moreover, the asymptotic representation of bH(x)� H(x) is given by

bH(x)� H(x)

=
1

nhd
H

n

Â
i=1

�
Yi � µ(Xi � x)0a(x)

�n
e01Sn,r(x)�1µ

�Xi � x
hH

�o

· K1
� x1

� X1
i

hH

�
K2
� x2

� X2
i

hH

�
+ O

�
x2

H
�

as n ! • in probability uniformly over x 2 SX, where e1 = (1, 0, · · · , 0)0 is a Nr ⇥ 1 vector, µ(Xi � x)0a(x)
represents the r-th order Taylor expansion of H(Xi) at Xi = x. Sn,r(x), µ( · ) and a(x) are defined in Appendix
S.1.1.

Proof. The first part can be established by an argument similar to the proof of Theorem 6 of Masry
(1996). Its proof is hence omitted here. According to the uniform bahadur representation in Remark 1
of Theorem 3.2 in Kong, Linton, and Xia (2010),

bH(x)� H(x) =
1

nhd
H

e01Sn,r(x)�1B�1
H

n

Â
i=1

K
� x � Xi

hH

��
Yi � µ(Xi � x)0a(x)

�
µ(Xi � x)

+ O
� log n

nhd
H

�

=
1

nhd
H

e01Sn,r(x)�1B�1
H

n

Â
i=1

K
� x � Xi

hH

��
Yi � µ(Xi � x)0a(x)

�
µ(Xi � x)

+ O
�
x2

H
�

as n ! • in probability uniformly over x 2 SX, where e1 = (1, 0, · · · , 0)0(Nr � 1 copies of 0), BH

is the diagonal matrix with diagonal vector bH =
�
b0H,s

�0
s=0,1,··· ,r and bH,s =

�
h|ps(k)|

H
�

k=1,2,...,Ms
. By

simplifying this equation, it establishes the second part and hence completes the whole proof.
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S.2.3 Lemma S.3
Lemma S.3 shows the large sample properties of the estimators of partial integrations zk(·) for k = 1, 2.
It establishes the uniform convergence rate and asymptotic representation of the estimators bzk(·)’s for
k = 1, 2. In particular, the asymptotic representation decomposes the difference between the estimator
and true value of zk(·) ( i.e. bzk � zk ) into a weighted sum of i.i.d. quantities (with a mean of 0) and a
bias term hr

H Dk
�
xk� for k = 1, 2 up to some higher order error.

Lemma S.3. Let Assumptions A.1-A.6 hold. Then for any k = 1, 2, as n ! •, (i) supxk2SXk

��bzk(xk)�

zk(xk)
�� = O

�
xHk
�

in probability with xHk = hr+1
H +

q
log(n)

��
nhdk

H
�
. (ii) Moreover, for any xk

2 SXk ,
bzk(xk)� zk(xk) can be written as

bzk(xk)� zk(xk) = Jnk(xk)� E[Jnk(xk)] + hr+1
H · Dk(xk) + op(hr+1

H ),

where Jnk(xk) and Dk(xk) are defined respectively by (S.1.6) and (S.1.7).

Proof. Only z1(·) part is shown here. The z2(·) part can be shown similarly. Let W = (Y, X1, X2).
Apply Lemma 1 of Horowitz (1998) (or Theorem 2.37 of Pollard (1984)) and Lemma S.2 to obtain

bz1
�

x1�
� z1

�
x1�

=
1
n

n

Â
j=1

h
bH�j
�
x1, X2

j
�
� H

�
x1, X2

j
�i

+ o
⇣ log(n)

p
n

⌘

=
1

n(n � 1)

n

Â
j=1

Â
i 6=j

1
hd

H

⇣
Yi�µ

�
X1

i � x1, X2
i � X2

j
�0

a(x1, X2
j )
⌘

K1

⇣ x1
�X1

i
hH

⌘
K2

⇣X2
j �X2

i

hH

⌘

·

⇣
e01Sn,r(x1, X2

j )
�1µ

�X1
i � x1

hH
,

X2
i � X2

j

hH

�⌘
+ O

�
x2

H
�
+ o
⇣ log(n)

p
n

⌘

=
1

n(n � 1)

n

Â
j=1

Â
i 6=j

y1
�
Wi, Wj

�
+

1
n(n � 1)

n

Â
j=1

Â
i 6=j

y2
�
Wi, Wj

�
+ O

�
x2

H
�
+ o
⇣ log(n)

p
n

⌘

=
1
n

n

Â
i=1

E
⇥
y1
�
Wi, Wj

���Wi
⇤
+

1
n(n � 1)

n

Â
i=1

Â
j 6=i

⇣
y1
�
Wi, Wj

�
� E

⇥
y1
�
Wi, Wj

���Wi
⇤⌘

+
1
n

n

Â
j=1

E
⇥
y2
�
Wi, Wj

���Wj
⇤
+

1
n(n � 1)

n

Â
i=1

Â
j 6=i

⇣
y2
�
Wi, Wj

�
� E

⇥
y2
�
Wi, Wj

���Wj
⇤⌘

+ O
�
x2

H
�
+ o
⇣ log(n)

p
n

⌘

=:T1n + T2n + T3n + T4n + O
�
x2

H
�
+ o
⇣ log(n)

p
n

⌘
(S.2.1)

as n ! • in probability uniformly over x1
2 SX1 , where bH�j(x1, X2

j ) is a leave-one-out local
polynomial estimator and

y1
�
Wi, Wj

�
=

1
hd

H

⇣
Yi�H(Xi)

⌘
K1

⇣ x1
�X1

i
hH

⌘
K2

⇣X2
j �X2

i

hH

⌘

·

⇣
e01Sn,r(x1, X2

j )
�1µ

�X1
i � x1

hH
,

X2
i � X2

j

hH

�⌘
,

5



y2
�
Wi, Wj

�
=

1
hd

H

⇣
H(Xi)�µ

�
X1

i � x1, X2
i � X2

j
�0

a(x1, X2
j )
⌘

K1

⇣ x1
�X1

i
hH

⌘
K2

⇣X2
j �X2

i

hH

⌘

·

⇣
e01Sn,r(x1, X2

j )
�1µ

�X1
i � x1

hH
,

X2
i � X2

j

hH

�⌘
.

The rest of proof establishes the asymptotic representation of T1n, T2n, T3n, and T4n. It is accomplished
in four steps. The asymptotic representation of T1n characterizes the stochastic leading term, and T3n

characterizes the leading bias term.
Step 1. For T1n,

E[y1(Wi, Wj)|Wi]

=
1

hd1
H

K1

⇣ x1
�X1

i
hH

⌘�
Yi � H(Xi)

�

·

Z ⇣
e01Sn,r(x1, X2

j )
�1µ

�X1
i � x1

hH
,

X2
i � X2

j

hH

�⌘ 1

hd2
H

K2

⇣X2
j �X2

i

hH

⌘
pX2(X2

j )dX2
j

=
1

hd1
H

K1

⇣ x1
�X1

i
hH

⌘�
Yi � H(Xi)

�
e01
�
S�1

r + O(hH)
�

·

Z
µ
�X1

i � x1

hH
,

X2
i � X2

j

hH

� 1

hd1
H

K2

⇣X2
j �X2

i

hH

⌘ pX2(X2
j )

pX(x1, X2
j )

dX2
j

=
1

hd1
H

K1

⇣ x1
�X1

i
hH

⌘ Yi � H(Xi)

pX1|X2(x1|X2
i )

e01S�1
r Vµ

1

⇣ x1
�X1

i
hH

⌘�
1 + O(hH)

 

=
1

hd1
H

K1

⇣ x1
�X1

i
hH

⌘ Yi � H(Xi)

pX1|X2(x1|X2
i )

e01S�1
r Vµ

1

⇣ x1
�X1

i
hH

⌘
+ O(hHxH1),

where the last second equation is given by change of variable and first order Taylor expansion, and
the last equation is based on the proof of Theorem 6 in Masry (1996). Thus, T1n can be written as

T1n =
1

nhd1
H

n

Â
i=1

K1

⇣ x1
�X1

i
hH

⌘ Yi � H(Xi)

pX1|X2(x1|X2
i )

e01S�1
r Vµ

1

⇣ x1
�X1

i
hH

⌘
+ O(hHxH1).

Step 2. For T2n, it can be decomposed as

T2n =
1

n(n � 1)

n

Â
i=1

Â
j 6=i

⇣
y1
�
Wi, Wj

�
� E

⇥
y1
�
Wi, Wj

���Wi
⇤⌘

=
1

nhd
H

n

Â
i=1

K1

⇣ x1
�X1

i
hH

⌘ 1
n � 1 Â

j 6=i

⇣
ỹ1
�
Wi, Wj

�
� E

⇥
ỹ1
�
Wi, Wj

���Wi
⇤⌘

=o
⇣ log(n)2

nhd/2
H

⌘
,

where ỹ1(Wi, Wj) =
1

hd2
H

K2

⇣X2
j�X2

i
hH

⌘�
Yi � H(xi)

�⇣
e01Sn,p(x1, X2

j )
�1µ

�X1
i �x1

hH
,

X2
i �X2

j
hH

�⌘
, and the last equal-

ity is obtained by applying Lemma 1 of Horowitz (1998) (or Theorem 2.37 of Pollard (1984)).12

12A similar argument is used by Horowitz (1998) to establish its (C.5).
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Step 3. For T3n, the summand E[y(Wi, Wj)|Wj] can be simplified as

E[y2(Wi, Wj)|Wj]

=E

"
1

hd
H

⇣
H(Xi)�µ

�
X1

i � x1, X2
i � X2

j
�0

a(x1, X2
j )
⌘

K1

⇣ x1
�X1

i
hH

⌘
K2

⇣X2
j �X2

i

hH

⌘

·

⇣
e01Sn,r(x1, X2

j )
�1µ

�X1
i � x1

hH
,

X2
i � X2

j

hH

�⌘
�����Wj

#

=e01Sn,r(x1, X2
j )

�1
Z 1

hd
H

⇣
H(Xi)�µ

�
X1

i � x1, X2
i � X2

j
�0

a(x1, X2
j )
⌘

· K1

⇣ x1
�X1

i
hH

⌘
K2

⇣X2
j �X2

i

hH

⌘
µ
�X1

i � x1

hH
,

X2
i � X2

j

hH

�
pX(Xi)dXi

=e01Sn,r(x1, X2
j )

�1 Â
|s|=r+1

1
s!

DsH(x1, X2
j )
Z

usµ(u)pX(Xj + hHu)du · hr+1
H + o(hr+1

H )

=e01Sn,r(x1, X2
j )

�1

 
hr+1

H Sr+1
n,r (x1, X2

j )Hr+1(x1, X2
j ) + op(hr+1

H )

!

=hr+1
H e01S�1

r Sr+1
r Hr+1(x1, X2

j ) + op(hr+1
H ), (S.2.2)

where the last second equality is derived by change of variable in the integration and Taylor expansion,
and the last equality is due to the approximations Sn,r(x)�1 = {pX(x)}�1S�1

r +O(hH) and Sr+1
n,r (x) =

pX(x)Sr+1
r + O(hH) in the proof of Proposition 3.1 in Kong, Linton, and Xia (2010).13 Thus, the

weighted sum can be represented as

T3n =
1
n

n

Â
j=1

E[y2(Wi, Wj)|Wj]

=hr+1
H e01S�1

r Sr+1
r

 
1
n

n

Â
j=1

Hr+1(x1, X2
j )pX(x1, X2

j )

!
+ op(hr+1

H )

=hr+1
H e01S�1

r Sr+1
r E

⇥
Hr+1(x1, X2)

⇤
+ op(hr+1

H )

Step 4. For T4n, note that

E

"⇣ 1
n � 1 Â

j 6=i

h
y2(Wi, Wj)� E

⇥
y2(Wi, Wj)|Wi

⇤⌘2
#

=
1

n � 1
E
h�

y2(W2, W1)� E
⇥
y2(W2, W1)|W1

⇤�2
i


1

n � 1
E
h�

y2(W2, W1)
�2
i

=O
�h2r+2

H
n
�
,

where the last equality is obtained by Taylor expansion similar to Step 3. By applying Lemma 1 of
13When r is even, e01S�1

r Sr+1
r = 0 and thus the first term on the right hand side of the last equality (S.2.2) vanishes. In this case,

the bias term is of order O(hr+2) if we further assume that all functions and densities are (r + 2) continuously differentiable.
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Horowitz (1998) (or Theorem 2.37 of Pollard (1984)), we derive

T4n =
1

n(n � 1)

n

Â
i=1

Â
j 6=i

h
y2(Wi, Wj)� E

⇥
y2(Wi, Wj)|Wj

⇤i

=
1
n

n

Â
i=1

1
n � 1 Â

j 6=i

h
y2(Wi, Wj)� E

⇥
y2(Wi, Wj)|Wi

⇤i

=o
⇣

hr+1
H

log(n)
n

⌘
.

With the bandwidths satisfying Assumption A.6, combining steps 1-4 yields

bz1
�
x1�

� z1
�
x1�

=T1n + T2n + T3n + T4n + O
�
x2

H
�
+ o
⇣ log(n)

p
n

⌘

=
1

nhd1
H

n

Â
i=1

K1
� x1

� X1
i

hH

�
·

Yi � H(Xi)

pX1|X2(x1|X2
i )

e01S�1
r Vµ

1

⇣ x1
�X1

i
hH

⌘

+ e01S�1
r Sr+1

r E
⇥
Hr+1(x1, X2)

⇤
hr+1

H

+ O(x2
H + hHxH1) + o

⇣ log(n)
p

n
+

log(n)2

nhd/2
H

+ hr+1
H + hr+1

H
log(n)

n

⌘

=Jn1(x1) + D1(x1)hr+1
H + o(hr+1

H )

in probability as n ! • uniformly over x1
2 SX1 , where the first term on the right hand side of

last equality is given by the definition of Jn1(x1) in (S.1.6), and E[Jn1(x1)] = 0.14 The asymptotic
representation of bz1

�
x1�

� z1
�
x1� is hence established.

Following an idea similar to the proof of Theorem 6 of Masry (1996), we have

sup
x12SX1

�����
1

nhd1
H

n

Â
i=1

K1
� x1

� X1
i

hH

�
·

Yi � H(Xi)

pX1|X2(x1|X2
i )

e01S�1
p Vµ

⇣ x1
�X1

i
hH

⌘�����=O
⇣s log(n)

nhd1
H

⌘
(S.2.3)

in probability as n ! •. Based on the asymptotic representation, this implies that supx12SX1

��bz1(x1)�

z1(x1)
��=O

�
hr+1

H +
r

log(n)

nhd1
H

�
=O

�
xH1

�
in probability as n ! •. This completes the proof.

S.2.4 Lemma S.4
Lemma S.4 characterize the uniform convergence rate and asymptotic representation of the Local
linear estimators. There are three terms in the leading part (excluding all higher order remainders) of
the difference bH(z)�H(z). The first term in the asymptotic representation is the oracle term with
true z1(·) and z2(·). The second and third terms represent the error by estimating z1(·) and z2(·),
respectively. Note that xH1 � xH2 > 0 due to d1 � d2. This implies that O(xH1 + xH2) = O(xH1).

14It is easy to obtain E[Jn1(x1)] = E

"
1

nhd1
H

K1
� x1

�X1
i

hH

�
·

1
pX1 |X2 (x1 |X2

i )
e01S�1

r Vµ
1

⇣
x1
�X1

i
hH

⌘
E[Yi � H(Xi)|Xi ]

#
= 0 by Law of iterative

expectations.
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Lemma S.4. Suppose that Assumptions A.1-A.6 hold. Then

sup
z2SZ

��BH

�bb(z)� b(z)
��� = O

�
xH + xH1

�

in probability as n ! •. Moreover, the asymptotic representation of bb(z)� b(z) is given by

BH

�bb(z)� b(z)
�

=
1

nh2
H

n

Â
i=1

S̃n,r(z)�1k
� z1

� z1
�
X1

i
�

hH

�
k
� z2

� z2
�
X2

i
�

hH

�n
Yi � µ̃

�
z(Xi)� z

�0
b(z)

o
µ
⇣ z(Xi)� z

hH

⌘

+
1

nh3
H

n

Â
i=1

S̃n,r(z)�1

"⇣ ∂

∂u1 t(u, Yi; z)K̃(u) + t(u, Yi; z)∂1K̃(u)
⌘���

u= z(Xi)�z
h
H

#
�bz1(X1

i )� z1(X1
i )
�

+
1

nh3
H

n

Â
i=1

S̃n,r(z)�1

"⇣ ∂

∂u2 t(u, Yi; z)K̃(u) + t(u, Yi; z)∂2K̃(u)
⌘���

u= z(Xi)�z
h
H

#
�bz2(X2

i )� z2(X2
i )
�

+ O
�
x2
H
+ x2

H1
�

as n ! • in probability uniformly over z 2 SZ, where bb(z) is the r-th order local polynomial estimator of true
value b(z), u = (u1, u2), and t(u, Yi; z) = µ̃(u)

�
Yi � µ̃(u)0BHb(z)

�
. BH, S̃n,r(z) and µ̃(u) are defined in

Appendix S.1.1. .

Proof. Note that
BH

�bb(z)� b(z)
�
= BH

�bb(z)� b̃(z)
�
+ BH

�
b̃(z)� b(z)

�
.

First we consider BH

�bb(z)� b̃(z)
�
.

BH

�bb(z)� b̃(z)
�
=[Sn,r(z, bz)�1

� Sn,r(z, z)�1]Qn,r(z, z) + Sn,r(z, z)�1[Qn,r(z, bz)�Qn(z, z)]

+ [Sn,r(z, bz)�1
� Sn,r(z, z)�1] · [Qn,r(z, bz)�Qn,r(z, z)]. (S.2.4)

Sn,r( · ) and Qn,r( · ) are defined in Appendix S.1.1. As for Qn,r(z, bz)�Qn,r(z, z), we apply Taylor
expansion. By Lemma 1 of Horowitz (1998) (or Theorem 2.37 of Pollard (1984)) and our Lemma S.3,

Qn,r(z, bz)�Qn,r(z, z) =
1

nh3
H

n

Â
i=1

n
DzQ

1
in(z, z)

�bz1(X1
i )� z1(X1

i )
�
+ DzQ

2
in(z, z)

�bz2(X2
i )� z2(X2

i )
�o

+ O(x2
H1)

(S.2.5)

and Qn,r(z, bz) � Qn,r(z, z) = O(xH1) in probability as n ! • uniformly over z 2 SZ, where
DzQ

1
in(z, z) is a Ñr ⇥ 1 vector with

⇥
DzQ

1
in(z, z)

⇤
l =8

<

:
Yi
� z2(X2

i )�z2

hH

�r2 ∂1K̃
� z�z(Xi)

hH

�
, r1 = 0

Yi
� z2(X2

i )�z2

hH

�r2
h
∂1K̃

� z�z(Xi)
hH

�� z1(X1
i )�z1

hH

�r1 + r1K̃
� z�z(Xi)

hH

�� z1(X1
i )�z1

hH

�r1�1
i
, r1 � 1

,

9



where r̃ = (r1, r2) is the correspondent power numbers of the l-th entry of Qn,r(z, z), i.e.

⇥
Qn,r(z, z)

⇤
l =

1
nh2

H

n

Â
i=1

� z � z(Xi)
hH

�r̃ K̃
� z � z(Xi)

hH

�
.

Similarly, we can define DzQ
2
in(z, z).

As for Sn(z, bz)�1
� Sn(z, z)�1, Similarly, we can derive that

Sn(z, bz)� Sn(z, z) =
1

nh3
H

n

Â
i=1

n
DzS

1
in(z, z)

�bz1(X1
i )� z1(X1

i )
�
+ DzS

2
in(z, z)

�bz2(Xi)� z2(Xi)
�o

+ O(x2
H1),

and Sn(z, bz) � Sn(z, z) = O(xH1) as n ! • in probability uniformly over z 2 SZ, where matrix
DzS

v
in(z, z) (v = 1, 2) satisfies that its (l, k)-entry (l, k = 1, 2, . . . , Nr) is

⇥
DzS

1
in(z, z)

⇤
lk =8

<

:

� z2(X2
i )�z2

hH

�r2 ∂1K̃
� z�z(Xi)

hH

�
, r1 = 0

� z2(X2
i )�z2

hH

�r2
h
∂1K̃

� z�z(Xi)
hH

�� z1(X1
i )�z1

hH

�r1 + r1K̃
� z�z(Xi)

hH

�� z1(X1
i )�z1

hH

�r1�1
i
, r1 � 1

,

where r̃ = (r1, r2) is the power number of the (l, k)-element of Sn(z, z). Similarly, we can define
DzS

2
in(z, z). Similar to the arguments in the proof of Theorem 3.2 in Kong, Linton, and Xia (2010), we

have supz2SZ
|Sn(z, z)� S̃n,r(z)| = O(xH) as n ! • in probability. Thus, the triangular inequality

implies that
Sn(z, bz)� S̃n,r(z) = O(xH1 + xH)

as n ! • in probability uniformly over z 2 SZ. Therefore, we can derive that

Sn(z, bz)�1
� Sn(z, z)�1

=� Sn(z, bz)�1
⇣
Sn(z, bz)� Sn(z, z)

⌘
Sn(z, z)�1

=�
1

nh3
H

n

Â
i=1

S̃n,r(z)�1
n

DzS
1
in(z, z)

�bz1(X1
i )� z1(X1

i )
�
+ DzS

2
in(z, z)

�bz2(X2
i )� z2(X2

i )
�o

S̃n,r(z)�1

+ O
�
xH · xH1 + x2

H1
�

(S.2.6)

and Sn(z, bz)�1
� Sn(z, z)�1 = O(xH1) as n ! • in probability uniformly over z 2 SZ. Also, we have

Qn(z, z) = Sn(z, z)BH b̃(z). By Theorem 6 in Masry (1996), supz2SZ

��BH

�
b̃(z)� b(z)

��� = O(xH) in
probability as n ! •. Therefore, we have

Qn(z, z)� S̃n,r(z)BHb(z) = O(xH) (S.2.7)

as n ! • in probability uniformly over z 2 SZ. According to (S.2.5), (S.2.6) and (S.2.7), (S.2.4) can be
rewritten as

BH

�bb(z)� b̃(z)
�

=[Sn(z, bz)�1
� Sn(z, z)�1]

�
S̃n,r(z)BHb(z) + O(xH)

�
+
�
S̃n,r(z)�1 + O(xH)

�
[Qn(z, bz)�Qn(z, z)]

+ O(x2
H1)
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=
1

nh3
H

n

Â
i=1

S̃n,r(z)�1⇥
� DzS

1
in(z, z)BHb(z) + DzQ

1
in(z, z)

⇤�bz1(X1
i )� z1(X1

i )
�

+
1

nh3
H

n

Â
i=1

S̃n,r(z)�1⇥
� DzS

2
in(z, z)BHb(z) + DzQ

2
in(z, z)

⇤�bz2(X2
i )� z2(X2

i )
�

+ O
�
xH · xH1 + x2

H1
�

=
1

nh3
H

n

Â
i=1

S̃n,r(z)�1

"⇣ ∂

∂u1 t(u, Yi; z)K̃(u) + t(u, Yi; z)∂1K̃(u)
⌘���

u= z(Xi)�z
h
H

#
�bz1(X1

i )� z1(X1
i )
�

1
nh3

H

n

Â
i=1

S̃n,r(z)�1

"⇣ ∂

∂u2 t(u, Yi; z)K̃(u) + t(u, Yi; z)∂2K̃(u)
⌘���

u= z(Xi)�z
h
H

#
�bz2(X2

i )� z2(X2
i )
�

+ O
�
x2
H
+ x2

H1
�

(S.2.8)

and BH

�bb(z)� b̃(z)
�
= O(xH1) in probability as n ! • uniformly over z 2 SZ.

Second we consider BH

�
b̃(z)� b(z)

�
. The asymptotic linear representation is a direct application of

Theorem 3.2 in Kong, Linton, and Xia (2010), that is,

BH

�
b̃(z)� b(z)

�

=
1

nh2
H

n

Â
i=1

S̃n,r(z)�1k
� z1

� z1
�
X1

i
�

hH

�
k
� z2

� z2
�
X2

i
�

hH

�n
Yi � µ̃

�
z(Xi)� z

�0
b(z)

o
µ
⇣ z(Xi)� z

hH

⌘

+ O(x2
H
) (S.2.9)

and BH

�
b̃(z)� b(z)

�
= O(xH) in probability as n ! • uniformly over z 2 SZ. Finally, the desired

representation of BH

�bb(·)� b(·)
�

can then be established by (S.2.8) and (S.2.9).

S.2.5 Lemma S.5
∂k bH(z) is the r-th order local polynomial estimator of first derivatives ∂kH(z) (k = 1, 2) based on a
data

�
Yi, bz1(Xi), bz2(Xi)

 n
i=1, while ∂kH̃(z) is the infeasible version with a data

�
Yi, z1(Xi), z2(Xi)

 n
i=1.

Lemma S.5 studies the asymptotic properties of ∂k bH(z). It shows the uniform convergence and asymp-
totic representation of such statistics. Particularly, the first two terms in the asymptotic representation
come from the (asymptotic) representation of infeasible estimator ∂kH̃(z), while the third term is
the additional bias appearing in the difference between feasible and infeasible estimators, namely
∂k bH(z)� ∂kH̃(z).

Lemma S.5. Suppose that Assumptions A.1-A.6 hold. Then for k = 1, 2, (i) supz2SZ

��∂k bH(z)� ∂kH(z)
�� =

O
�
x 0
H
+ xH1

�
in probability as n ! •; (ii) ∂k bH(z)� ∂kH(z) has an asymptotic representation as

"
d∂1H(z)
d∂2H(z)

#
�

"
∂1H(z)
∂2H(z)

#
=

1
nh3

H

n

Â
i=1

e0dS̃n,r(z)�1K̃
� z � z

�
Xi
�

hH

��
Yi � H(Xi)

�
µ
⇣ z(Xi)� z

hH

⌘
+D(z)hr

H
+D(z)hr+1

H

+ o
�
hr
H
+ hr+1

H
�
+ O

⇣ log(n)
nh4

H

+
log(n)
nhd1

H

⌘

in probability as n ! • uniformly over z 2 SZ.
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Proof. Note that

"
d∂1H(z)
d∂2H(z)

#
�

"
∂1H(z)
∂2H(z)

#
=e0d

�bb(z)� b(z)
�
= e0dB�1

H
· BH

�bb(z)� b(z)
�

=
1

hH
e0d · BH

�bb(z)� b(z)
�
.

Thus, part (i) is trivial by Lemma S.5. To find the asymptotic representation, we just need to further
decompose bb(z)� b(z). According to Lemma S.4, we just need to derive the asymptotic representation
of following three parts,

A1n(z) =
1

nh3
H

n

Â
i=1

e0dS̃n,r(z)�1K̃
� z � z

�
Xi
�

hH

�n
Yi � µ̃

�
z � z(Xi)

�0
b(z)

o
µ
⇣ z � z(Xi)

hH

⌘
;

A2n(z) =
1

nh4
H

n

Â
i=1

e0dS̃n,r(z)�1

"⇣ ∂

∂u1 t(u, Yi; z)K̃(u) + t(u, Yi; z)∂1K̃(u)
⌘���

u= z(Xi)�z
h
H

#
�bz1(X1

i )� z1(X1
i )
�
;

A3n(z) =
1

nh4
H

n

Â
i=1

e0dS̃n,r(z)�1

"⇣ ∂

∂u2 t(u, Yi; z)K̃(u) + t(u, Yi; z)∂2K̃(u)
⌘���

u= z(Xi)�z
h
H

#
�bz2(X2

i )� z2(X2
i )
�
.

First we consider A1n(z),

A1n(z) =
1

nh3
H

n

Â
i=1

e0dS̃n,r(z)�1K̃
� z � z

�
Xi
�

hH

�n
H
�
z(Xi)

�
� µ̃

�
z � z(Xi)

�0
b(z)

o
µ
⇣ z � z(Xi)

hH

⌘

+
1

nh3
H

n

Â
i=1

e0dS̃n,r(z)�1K̃
� z � z

�
Xi
�

hH

�n
Yi �H

�
z(Xi)

�o
µ
⇣ z � z(Xi)

hH

⌘

=:A11n(z) + A12n(z). (S.2.10)

As for A11n(z), note that

E
⇥
A11n(z)

⇤

=
1

h3
H

e0dB�1
H

S̃n,r(z)�1
Z

K̃
� z � Z

hH

�n
H
�
Z
�
� µ̃

�
z � Z

�0
b(z)

o
µ
⇣ z � Z

hH

⌘
pZ(Z)dZ

=e0dS̃n,r(z)�1 Â
|j|=r+1

1
j!

Dj
H(z)

Z
ujµ̃(u)K̃(u)pZ(z + hHu)du · hr

H
+ o(hr)

=e0dS̃n,r(z)�1S̃r+1
n,r (z)Hr+1(z) · hr

H
+ o(hr

H
)

=e0dS̃�1
r S̃r+1

r Hr+1(z) · hr
H
+ o(hr

H
),

where the second equality is derived by change of variables and Taylor expansion, and the last equality
is due to the approximations S̃n,r(z)�1 = S̃�1

r pZ(z)�1 + O(hH) and S̃r+1
n,r (z) = S̃r+1

r pZ(z) + O(hH) in
the proof of Proposition 3.1 in Kong, Linton, and Xia (2010). Also, by Lemma 1 of Horowitz (1998) (or
Theorem 2.37 of Pollard (1984)), we derive

A11n(z)

=E[A11n(z)] +
�

A11n(z)� E[A11n(z)]
�

12



=e0dS̃�1
r S̃r+1

r Hr+1(z) · hr
H
+ o(hr

H
) + o

⇣
hr
H

log(n)
n1/2

⌘

=e0dS̃�1
r S̃r+1

r Hr+1(z) · hr
H
+ o(hr

H
)

Therefore by (S.2.10), we derive

A1n(z)

=
1

nh3
H

n

Â
i=1

e0dS̃n,r(z)�1K̃
� z � z

�
Xi
�

hH

��
Yi � H(Xi)

�
µ
⇣ z � z(Xi)

hH

⌘
+ e0dS̃�1

r S̃r+1
r Hr+1(z) · hr

H

+ o(hr
H
). (S.2.11)

Second we consider A2n(z), plugging the asymptotic representation of bz1(X1
i ) � z1(X1

i ) given by
Lemma S.3 into A2n(z), under Assumption A.6,

A2n(z)

=e0dS̃n,r(z)�1

 
1

nh4
H

n

Â
i=1

"⇣ ∂

∂u1 t(u, Yi; z)K̃(u) + t(u, Yi; z)∂1K̃(u)
⌘���

u= z(Xi)�z
h
H

#
D1(X1

i ) · hr+1
H

+
1

nh4
H

n

Â
i=1

"⇣ ∂

∂u1 t(u, Yi; z)K̃(u) + t(u, Yi; z)∂1K̃(u)
⌘���

u= z(Xi)�z
h
H

#
Jn1(X1

i )

!

+ o(hr+1
H )

=:e0dS̃n,r(z)�1�A21n(z) + A22n(z)
�
+ o(hr+1

H ). (S.2.12)

As for A21n(z), note that by product rule of derivatives

⇣ ∂

∂u1 t(u, Yi; z)K̃(u) + t(u, Yi; z)∂1K̃(u)
⌘���

u= z(Xi)�z
h
H

=
∂

∂u1

n
t(u, Yi; z)K̃(u)

o���
u= z(Xi)�z

h
H

=
�
Yi �H(z(Xi))

�⇣ ∂

∂u1

�
µ̃(u)K̃(u)

 ⌘���
u= z(Xi)�z

h
H

+
∂

∂u1

n
t(u,H(z + hHu); z)K̃(u)

o���
u= z(Xi)�z

h
H

� µ̃(u)K̃(u)
��
u= z(Xi)�z

h
H

·
∂

∂z1 H(z)
��
z=z(Xi)

· hH,

where t(u, Yi; z)K̃(u) = µ̃(u)
�
Yi � µ̃(u)0BHb(z)

�
K̃(u). Thus, we can further decompose A21n(z) as

A21n(z)

=
1

nh4
H

n

Â
i=1

⇣
Yi �H

�
z(Xi)

�⌘
D1(X1

i )
⇣ ∂

∂u1

�
µ̃(u)K̃(u)

 ⌘���
u= z(Xi)�z

h
H

· hr+1
H

+
1

nh4
H

n

Â
i=1

∂

∂u1

n
t(u,H(z + hHu); z)K̃(u)

o���
u= z(Xi)�z

h
H

· D1(X1
i ) · hr+1

H

13



�
1

nh3
H

n

Â
i=1

µ̃(u)K̃(u)
��
u= z(Xi)�z

h
H

·
∂

∂z1 H(z)
���
z=z(Xi)

· D1(X1
i ) · hr+1

H

=:A211n(z) + A212n(z) + A213n(z).

By Lemma 1 of Horowitz (1998) (or Theorem 2.37 of Pollard (1984)),

A211n(z) = o
⇣hr+1

H log(n)
n1/2h3

H

⌘
,

and

A212n(z)

=E[A212n(z)] +
⇣

A212n(z)� E[A212n(z)]
⌘

=
hr+1

H
h4
H

Z
∂

∂u1

n
t(u,H(z + hHu); z)K̃(u)

o���
u= z(Xi)�z

h
H

E[D1(X1
i )|z(Xi) = Z]pZ(Z)dZ + o

⇣
hr+1

H
h(r�5)/2
H

log(n)
n1/2

⌘

=�
hr+1

H
h2
H

Z n
t(u,H(z + hHu); z)K̃(u)

o ∂

∂u1 E[D1(X1
i )|z(Xi) = z + hHu]pZ(z + hHu)du + o

⇣hr+1
H h(r�5)/2

H
log(n)

n1/2

⌘

=O(hr+1
H · hr

H
) + o

⇣hr+1
H h(r�5)/2

H
log(n)

n1/2

⌘
,

where the last second equality is derived by change of variable and integration by parts, and the last
equality is due to Taylor expansion. As for A213n(z), similar to A212n(z), by Lemma 1 of Horowitz
(1998) (or Theorem 2.37 of Pollard (1984)), we have

A213n(z)

=E[A213n(z)] +
�

A213n(z)� E[A213n(z)]
�

=�
hr+1

H
h3
H

Z
µ̃(u)K̃(u)

��
u= Z�z

h
H

·
∂

∂z1 H(z)
���
z=Z

E[D1(X1
i )|z(Xi) = Z]pZ(Z)dZ + o

⇣ hr+1
H log(n)
n1/2h2

H

⌘

=� Vµ̃
r

∂

∂z1 H(z)E[D1(X1
i )|z(Xi) = z]pZ(z) ·

hr+1
H
hH

� Vµ̃
r (1)

∂

∂z1

(
∂

∂z1 H(z)E[D1(X1
i )|z(Xi) = z]pZ(z)

)
· hr+1

H

� Vµ̃
r (2)

∂

∂z2

(
∂

∂z1 H(z)E[D1(X1
i )|z(Xi) = z]pZ(z)

)
· hr+1

H

+ o
⇣

hr+1
H +

hr+1
H log(n)
n1/2h2

H

⌘
,

where Vµ̃
r =

R
µ̃(u)K̃(u)du, Vµ̃

r (1) =
R

u1µ̃(u)K̃(u)du, and Vµ̃
r (2) =

R
u2µ̃(u)K̃(u)du. Therefore, by

adding up A211n(z), A212n(z), and A213n(z), we derive

e0dS̃n,r(z)�1 A21n

14



=e0d
�
S̃�1

r pZ(z)�1 + O(hH)
�
·

 
� Vµ̃

r
∂

∂z1 H(z)E[D1(X1
i )|z(Xi) = z]pZ(z) · hr+1

H

� Vµ̃
r (1)pZ(z)�1 ∂

∂z1

(
∂

∂z1 H(z)E[D1(X1
i )|z(Xi) = z]pZ(z)

)
· hr+1

H

� Vµ̃
r (2)pZ(z)�1 ∂

∂z2

(
∂

∂z1 H(z)E[D1(X1
i )|z(Xi) = z]pZ(z)

)
· hr+1

H

!

+ o
⇣

hr+1
H +

hr+1
H log(n)
n1/2h3

H

⌘

=� ẽ1 pZ(z)�1 ∂

∂z1

(
∂

∂z1 H(z)E[D1(X1
i )|z(Xi) = z]pZ(z)

)
· hr+1

H

� ẽ2 pZ(z)�1 ∂

∂z2

(
∂

∂z1 H(z)E[D1(X1
i )|z(Xi) = z]pZ(z)

)
· hr+1

H

+ o
⇣

hr+1
H +

hr+1
H log(n)
n1/2h3

H

⌘
, (S.2.13)

where the last equality is due to the facts that S̃�1
r Vµ̃

r = e1, S̃�1
r Vµ̃

r (1) = (0, 1, 0, · · · , 0)0, and
S̃�1

r Vµ̃
r (1) = (0, 0, 1, · · · , 0)0.

As for A22n(z), note that by (S.2.3) in Lemma S.3,

sup
x12SX1

��Jn1(x1)
�� = O

⇣s log(n)
nhd1

H

⌘

in probability as n ! •, and E[Jn1(X1
i )|X

1
i = x1] = 0. Thus by Lemma 1 of Horowitz (1998) (or

Theorem 2.37 of Pollard (1984)),

A22n(z)

=
1

nh4
H

n

Â
i=1

"⇣ ∂

∂u1 t(u, Yi; z)K̃(u) + t(u, Yi; z)∂1K̃(u)
⌘���

u= z�z(Xi)
h
H

#
Jn1(X1

i )

!

=o
⇣ log(n)3/2

nh3
H

hd1/2
H

⌘
. (S.2.14)

Plugging (S.2.13) and (S.2.14) into (S.2.12), we get

A2n(z)

=� ẽ1 pZ(z)�1 ∂

∂z1

(
∂

∂z1 H(z)E[D1(X1
i )|z(Xi) = z]pZ(z)

)
· hr+1

H

� ẽ2 pZ(z)�1 ∂

∂z2

(
∂

∂z1 H(z)E[D1(X1
i )|z(Xi) = z]pZ(z)

)
· hr+1

H

+ o
⇣

hr+1
H +

hr+1
H log(n)
n1/2h3

H

+
hr+1

H h(r�5)/2
H

log(n)
n1/2 +

log(n)3/2

nh3
H

hd1/2
H

⌘
(S.2.15)
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Similarly, we have the decomposition for A3n(z). By adding up the representations of A1n(z), A2n(z),
and A3n(z), The desired conclusion therefore follows from Assumption A.6.

S.2.6 Lemma S.6

Let ˇ̃fk(·) be an infeasible estimator of f̃k(·) with an (infeasible) data of {Yi, z1(X1
i ), z2(X2

i )}
n
i=1, while

b̃f k(·) be a feasible estimator of f̃k(·) with a data of {Yi, bz1(X1
i ), bz2(X2

i )}
n
i=1. Lemma S.6 establishes the

uniform convergence rate and asymptotic representation of the feasible estimator of transformed
component function f̃k(·) for k = 1, 2. In particular, the first three terms in the asymptotic representa-
tion come from the (asymptotic) representation of infeasible estimator ˇ̃fk(zk), while the fourth term
is the additional bias appearing in the difference between feasible and infeasible estimators, namely
b̃f k(z

k)� ˇ̃fk(zk).

Lemma S.6. If Assumptions A.1-A.6 hold, then for k = 1, 2, (i) b̃f k(z
k)� f̃k(zk) = J̃nk(zk)� E[J̃nk(zk)] +

hr
H
Bk(zk)+ hr+1

H B̃k(zk)+ op(hr
H
+ hr+1

H ), and (ii) b̃f k(z
k)� f̃k(zk) = Op(hr

H
+
q

log(n)
nhH

+ hr+1
H ) as n ! •

uniformly over zk
2 SZk .

Proof. Only the case for k = 2 is proved. The proof for k = 1 is similar. The definition of b̃f 2(·) yields

b̃f 2(z
2)� f̃2(z2)=

Z z2

z2
0

Z ⇥∂2 bH(n)

∂1 bH(n)
�

∂2H(n)
∂1H(n)

⇤
w3(n

1)dn1dn2 (S.2.16)

By applying Taylor expansion to the integrand,

∂2 bH(n)

∂1 bH(n)
�

∂2H(n)
∂1H(n)

=
∂2 bH(n)�∂2H(n)

∂1H(n)
�

∂2H(n)
[∂1H(n)]2

[∂1 bH(n)�∂1H(n)]+O(x2
H1+[x 0

H
]2)

=q2(n)
0
·

 "
d∂1H(n)
d∂2H(n)

#
�

"
∂1H(n)

∂2H(n)

#!
+ O(x2

H1+[x 0
H
]2) (S.2.17)

in probability as n ! • uniformly over n 2 SZ, where q2(n) =
h
�

∂2H(n)
[∂1H(n)]2

, 1
∂1H(n)

i0
. By Lemma S.5

and plugging the representations of d∂kH(n)� ∂kH(n) into (S.2.17), we derive

∂2 bH(n)

∂1 bH(n)
�

∂2H(n)
∂1H(n)

=
1

nh3
H

q2(n)
0

n

Â
i=1

e0dS̃n,r(n)
�1K̃

�n � z
�
Xi
�

hH

��
Yi � H(Xi)

�
µ
⇣ z(Xi)� n

hH

⌘

+ q2(n)
0D(n)hr

H
+ q2(n)

0
D(n)hr+1

+ o
�
hr
H
+ hr+1

H
�
+ O

⇣ log(n)
nh4

H

+
log(n)
nhd1

H

⌘
(S.2.18)

in probability as n ! • uniformly over z 2 SZ. Therefore by integrating (S.2.18) and Assumption
A.6,

b̃f 2(z
2)� f̃2(z2)

=
Z z2

z2
0

Z ⇥∂2 bH(n)

∂1 bH(n)
�

∂2H(n)
∂1H(n)

⇤
w3(n

1)dn1dn2
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=
1

nh3
H

n

Â
i=1

Z z2

z2
0

Z
q2(n)

0e0dS̃n,r(n)
�1K̃

�n � z
�
Xi
�

hH

��
Yi � H(Xi)

�
µ
⇣ z(Xi)� n

hH

⌘
w3(n

1)dn1dn2

+B2(z2)hr
H
+ B̃2(z2)hr+1 + o

�
hr
H
+ hr+1

H
�
. (S.2.19)

The rest of the proof is to analyse the first term of the right hand side in (S.2.19). A change of variables
and a Taylor expansion show that

1
nh3

H

n

Â
i=1

Z z2

z2
0

Z
q2(n)

0e0dS̃n,r(n)
�1K̃

�n � z
�
Xi
�

hH

��
Yi � H(Xi)

�
µ
⇣ z(Xi)� n

hH

⌘
w3(n

1)dn1dn2

=
1

nh2
H

n

Â
i=1

Z z2

z2
0

q2(z1(X1
i ), n2)0e0dS̃�1

r k2
�n2

� z2
�
X2

i
�

hH

� Yi � H(Xi)

pZ(z1(X1
i ), n2)

Vµ̃
2

⇣ z2(X2
i )� n2

hH

⌘
w3(z1(X1

i ))dn2

+
1

nh3
H

n

Â
i=1

Z z2

z2
0

Z
q2(n)

0e0d
�
S̃n,r(n)

�1
� {pZ(n)}

�1S̃�1
r )

· K̃
�n � z

�
Xi
�

hH

��
Yi � H(Xi)

�
µ
⇣ z(Xi)� n

hH

⌘
w3(n

1)dn1dn2

+
1
n

n

Â
i=1

Z (z2
�z2(Xi))/hH

(z2
0�z2(Xi))/hH

∂

∂z1

"
q2(z1, z2(X2

i ) + hHu)0e0dS̃�1
r

·

�
Yi � H(Xi)

�
w3(z1)

pZ(z1, z2(X2
i ) + hHu)

#�����
z1=z1(X1

i )

n Z
u1µ̃(u)k1(u1)du1

o
k2(u2)du2 + o

⇣ 1
n

⌘

=:Q1n(z2) + Q2n(z2) + Q3n(z2) + o(hr+1
H ), (S.2.20)

where o(1/n) = o(hr+1
H ) is due to Assumption A.6. By Lemma 1 in Horowitz (1998) (or Theorem 2.37

in Pollard (1984)) and Assumption A.6, Q2n(z2) = o(hr+1
H ) and Q3n(z2) = o(hr+1

H ). As for Q1n(z2), an
integration by parts implies that

Q1n(z2)

=
1

nhH

n

Â
i=1

"
q2(z1(X1

i ), z2)0e0dS̃�1
r

Yi � H(Xi)

pZ(z1(X1
i ), z2)

Vµ̃
2

⇣ z2(X2
i )� z2

hH

⌘
w3(z1(X1

i ))K2
� z2

� z2
�
X2

i
�

hH

�

� q2(z1(X1
i ), z2

0)
0e0dS̃�1

r
Yi � H(Xi)

pZ(z1(X1
i ), z2

0)
Vµ̃

2

⇣ z2(X2
i )� z2

0
hH

⌘
w3(z1(X1

i ))K2
� z2

0 � z2
�
X2

i
�

hH

�
#

�
1
n

n

Â
i=1

Z (z2
�z2(Xi))/hH

(z2
0�z2(Xi))/hH

∂

∂z2

"
q2(z1(X1

i ), z2)0e0dS̃�1
r

·

�
Yi � H(Xi)

�
w3(z1(X1

i ))

pZ(z1(X1
i ), z2)

Vµ̃
2 (u)

#�����
z2=z2(X2

i )+hHu

K2(u2)du2

=J̃n2(z2) + Q12n(z2), (S.2.21)

where K2(u) =
R u
�• k2(t)dt. By Lemma 1 in Horowitz (1998) (or Theorem 2.37 in Pollard (1984)) and

Assumption A.6, Q12n(z2) = o(hr+1
H ) in probability as n ! • uniformly over z2

2 SZ2 . Rearranging
(S.2.19), (S.2.20), and (S.2.21), then part (i) is proved. Also, an argument similar to the proof of

Theorem 6 in Masry (1996) shows that supz22SZ2

��J̃n2(z2)
�� = Op

⇣q
log(n)
nhH

⌘
. Thus, part (ii) follows

from Assumption A.6.
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