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Abstract

This paper proposes an estimation approach following the constructive identification strategy of
Athey and Haile (2002) and Gentry and Li (2014) with adaption in the context of ascending auctions
with selective entry. Our estimators are shown to be consistent in a large sample and to perform
well in a finite sample by a simulation study. We apply our estimation approach to the Alibaba
online judicial auctions of used cars to recover the bounds of conditional value distribution and
the entry cost. The bounds estimates of both conditional value distribution and entry cost are quite
tight (resp. relatively wide) for middle-valued (resp. low-valued or high-valued) signal, and the
CDFs of conditional value distribution given signal comply with the law of ordered dominance.
Finally, our counterfactual analysis indicates that (i) the ascending auction yields a higher revenue
than the first-price sealed bid auction; and (ii) the revenue can be improved significantly when the
entry cost is cut by half.
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1 Introduction

There has been a very rapid development of judicial auctions in the Chinese market during the past
decade. A total amount of around 190 billion Chinese yuan (CNY) has been transacted by online
judicial auctions during all years before 2017, but the transaction amount dramatically increased
to around 400 billion CNY in a single year of 2020. With such a high growth, the total transaction
amount of Chinese online judicial auctions has exceeded 2 trillion CNY over all years until September
2022 (The Supreme People’s Court of China, 2022). Also, the number of attendants and auctioned ob-
jects has also increased considerably during the same period. For example, in the year of 2020, about
390 thousand people attended the online judicial auctions of more than 573 thousand auctioned ob-
jects. Online judicial auction has gradually become an increasingly popular auction format, and has
produced huge amount of bids data available for researchers.

Endogenous participation is one key feature of online judicial auctions in the Chinese market. For
example, the average participation rate is 75.32% in the judicial auctions of used cars on the Alibaba
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platform during March to October 2020. Endogenous participation has also been documented in
other auction datasets. See, for example, Bajari and Hortaçsu (2003); Hendricks et al. (2003); Li and
Zheng (2009); Li and Zhang (2010); Athey et al. (2011); Krasnokutskaya and Seim (2011), among
others. To accommodate endogenous participation in auctions, Marmer et al. (2013) develop a so-
called Affiliated-Signal (AS) model (drawing structure from Ye (2007)) which nests both the Levin
and Smith (1994) model and the Samuelson (1985) model depending on how informative the entry
signal is about the value of a bidder in an auction. Its identification is extensively studied by Gentry
and Li (2014). Specifically, they exploit the variation in the number of potential bidders and some
auction-level instruments to construct bounds on conditional value distribution and entry cost. In
particular, point identification can be achieved in the case of continuous entry variation. For a recent
survey of the literature on auctions with selective entry, see, e.g., Gentry et al. (2018); Perrigne and
Vuong (2021), among others.

This paper investigates Chinese online judicial auctions by applying our new estimation ap-
proach (on ascending auctions with selective entry) to a unique dataset of judicial auctions of used
cars held on Alibaba. Our estimation approach is proposed by following the constructive identifi-
cation strategy of Athey and Haile (2002) and Gentry and Li (2014) (with adaption) in the context
of ascending auctions with selective entry. We also establish the consistency of our estimators in a
large sample. Specifically, in the post-entry stage, we estimate the post-entry value distribution using
the identification strategy of Athey and Haile (2002); in the entry stage, our estimation then follows
the partial identification of Gentry and Li (2014) in the case without any auction level instrument
variable.

Our estimation method is then applied to the alibaba judicial auctions of used cars to recover
the bounds of conditional value distribution and the entry cost. Our bound estimates of conditional
value distribution is quite tight for a middle-valued signal. In our counterfactual analysis, we find
that (i) the ascending auction yields a higher revenue than the first-price sealed bid auction; and (ii)
The revenue can be improved significantly when the entry cost is cut by half.

Our paper first contributes to the increasing empirical literature using auction datasets in the
Chinese market. Cai et al. (2013) studied land auctions in China and found evidence of corruption
by choosing the auction format. Gao et al. (2018) studied initial public offering (IPO) auctions in
China and analyzed the bidding behavior of institutional investors. Luo et al. (2021) introduced an
order statistics approach and applied their method to Chinese online judicial auctions of residential
property. Liu and Xu (2022) adapted Haile and Tamer (2003)’s estimation approach to address the
issue of bound crossing without tuning parameter in an incomplete model of English auction without
entry. There seems to be no straightforward way to incorporate selective entry into the incomplete
model of English auctions considered in Haile and Tamer (2003). In English auctions with selective
entry, this article estimates the value distribution and entry cost bounds following the constructive
identification strategy of Athey and Haile (2002) and Gentry and Li (2014) with some adaptations.
Also, we establish the consistency of our estimators in a large sample.

We also contribute to the literature of auctions with selective entry.1 Selective entry breaks the
exogenous participation assumption, which is a key restriction to identify various auction models
with monotone strategies. See, e.g., Guerre et al. (2000, 2009); Li and Liu (2022), for such identifica-

1Selective entry introduces some form of non-random sample selection through censoring. Sample selection model with
censored selection has been studied, e.g., by Lee (1994); Chen (1997) in a semiparametric mean regression, and, e.g., Chen
et al. (2023a,b) in a semiparametric quantile/distribution regression.
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tion results; and Liu and Luo (2017); Liu and Vuong (2021) for testing the restrictions of exogenous
participation and monotone strategies in auctions.2 Under selective entry, Li (2005) introduced an
MSM estimator to estimate the value distribution parametrically using the known bids and number
of bidders. Marmer et al. (2013) proposed a general framework of the AS model to characterize se-
lective entry in auctions and designed a non-parametric test to discriminate its two polar cases given
by Levin and Smith (1994) and Samuelson (1985), respectively, from the general model. Chen et al.
(2020) identified and estimated the AS model with risk aversion in the context of first-price auctions.
Relative to Roberts and Sweeting (2010) who estimate a parametric version of ascending auctions
with selective entry, our paper considers non-parametric estimation of bounds of value distribution
and entry cost in an English auction with entry. We also apply our approach to an application of Al-
ibaba online auctions which is different from Roberts and Sweeting (2010) who investigate the USFS
timber auctions.

We organize the rest of this paper as follows. A unique dataset is described and the facts in
reduced form are shown in section 2. We introduce the econometric methodology used in our appli-
cation in Section 3. Section 4 provides a simulation study to show the finite sample performance of
our estimators. The main empirical results are shown in Section 5. Section 6 concludes our paper.
An appendix collects the proofs for all theorems and lemmas.

2 Data

2.1 Data description

We first briefly introduce the mechanism of Alibaba judicial auctions of used cars. Before entering an
auction, each bidder can observe the brand of the car, the number of potential bidders, the starting
price, and the appraisal value. Additionally, a photo of the used car is also available. Each potential
bidder receives a private signal about her own value. After paying an entry cost, a potential bidder
enters the auction and becomes an active bidder. The entry cost accounts for the deposit, time cost,
cost of studying the auction web page, and cost of observing the cars on the spot (if happens). After
entering the auction, active bidders obtain all information about the object and realize their own
valuations. Only bidders with values higher than the start price make bids. After entry, the auction
takes the format of first price ascending auction. We assume that the bidders are risk-neutral and
have symmetric independent private values.

A dataset of used cars’ judicial auctions was collected from the Alibaba judicial auction platform
from March to October in the year 2020. Many auction-level characteristics are available on the plat-
form. The traveling distance and the appraisal value of the auctioned car are given. We also collect
the official prices of new cars from a website called "Youjia", which is owned by the tech giant Baidu.3

The official price of a new car is used to measure the value of the brand of a used car with the same
brand. We collect the number of individuals who sign up for the auction as the number of potential
bidders. In addition, the following information is also available for each auction: transaction price,
start price, deposit for participation, number of photos, number of applicants, number of bidders,
and number of bid rounds.

2Monotonicity restrictions have been used widely to identify various economic models, including binary games (see, e.g.,
Liu et al., 2017; Liu and Xu, 2016), and generalized additive models (see, e.g., Chen et al., 2023c).

3https://www.yoojia.com/
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Table 2.1: Summary statistics

Mean Std. Dev Min Max

Transaction price 77.211 60.939 1.57 277.00

Official price 210.046 173.635 28.9 913

Traveling distance 111.628 76.506 0.307 378.903

appraisal value 81.312 66.804 1 340

Start price 63.370 52.530 0.216 250

Deposit 9.358 8.478 0.2 50

Bid increment 0.730 0.883 0.01 20

Number of photos 6.163 1.891 1 15

Number of bidders 4.538 1.801 2 9

Number of potential bidders 5.778 2.133 2 9

Number of bid rounds 17.275 9.616 2 45

Notes: all prices, deposit, and bid increment are in thousand CNY;

and the traveling distance is in thousand kilometers.

We dropped criminal judicial auctions because the characteristics of criminal cases are not avail-
able on the auction platform. In addition, we exclude data with only one bidder or with missing
information in the characteristics of interest. We further drop the auctions with more than 9 potential
bidders because the number of those auctions is too small. Furthermore, auctions with the highest
2% travel distance or with the highest 2% ratio from start price to appraisal are excluded. Eventu-
ally, 808 auctions are included, in which both the number of potential bidders and actual bidders
range from 2 to 9. Table 2.1 provides the summary statistic of our data. All prices, deposit, and bid
increment are measured in thousand CNY and the traveling distance is in thousand kilometers.

2.2 Reduced-form facts

Following Liu and Xu (2022), we estimate a linear regression model to assess the effects of interfering
factors on the transaction price in this section. We regress the logarithm of transaction price on
variables that reflect the characteristics of the auctions and the objects, which are the logarithm of
official price, traveling distance, start price, deposit, and the number of potential bidders. Table 2.2
presents the results of the linear regression.

The above results draw a rough picture of the used cars’ data. The outcome of the linear regres-
sion model indicates that the official price and the starting price, the deposit value, and the number
of potential bidders of the auction have a positive effect on the transaction price of the object, and the
effects are all significant at a significance level of 1%. As shown in Table 2.2, fixing all other factors,
1% increase in official price (or deposit) will raise the transaction price by 0.106% (or 0.276%). While
traveling distance has an insignificantly negative effect on transaction price at a significance level of
5%. The increase in 1% traveling distance will decrease the transaction price by 0.015%. This result
is intuitive since more traveling distances reflect the decline of car’s performance, thus reducing its
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Table 2.2: Linear regression result

Dependent Variable: log (transaction price)

Regressor Coefficient estimate t value

log (appraisal value ) 0.566 *** 25.65

log (official price ) 0.106 *** 5.16

log (traveling distance) -0.015 -1.24

log (deposit) 0.276 *** 12.71

number of potential bidders 0.039 *** 8.94

Cons 0.527 *** 6.03

Notes: (i) all prices and deposits are in thousand CNY; and the traveling distance is in

thousand kilometers.

(ii) *** stands for significance at a level of 1%.

transaction price.
In reduced-form analysis, the endogeneity issue can be addressed by some auction-level instru-

mental variables. However, the reduced-form approach cannot conduct counterfactual analysis in an
alternative auction format or a different entry cost level. Therefore, we propose a structural approach
that takes advantage of the variation of the number of potential bidders to obtain the bounds of the
underlying conditional value distribution and entry cost in the next section.

3 Econometric methodology

We follow Athey and Haile (2002) and Gentry and Li (2014) to non-parametrically identify the bounds
of bidder’s conditional value distribution given the signal and the bounds of the entry cost. The strat-
egy of Athey and Haile (2002) is used to identify the post-entry value distribution that is required by
the identification strategy of Gentry and Li (2014). We briefly describe the model, the identification
strategy, and our proposed estimation procedure in this section. For simplicity of discussion, we
abbreviate the auction-level characteristics in this section. We denote random variables in the upper
case, while their realizations are in the lower case.

3.1 Model

Let N ∈ {2, . . . , N}. N potential bidders participate in a first price ascending auction with indepen-
dent and identical value distribution F(·). Before entry, both their own values Vi and the others’ V−i

are not known, while they all receive a signal Si of their values. Vi and Si are drawn from the same
joint distribution F(v, s), and the marginal distribution of the signal Si is normalized to be uniform
on [0,1]. We follow the AS model in Gentry and Li (2014) and assume that the signal Si is affili-
ated with Vi. After receiving the signal, the potential bidder will decide whether he will enter this
auction by paying an entry cost c. The threshold signal level s∗N for a potential bidder is identified
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by the indifference between entering and not entering when all other potential bidders receive the
same signal level given a specific value of N, namely Π(s∗N ; s∗N , N) = c, where Π(s; s̃, N) represents
the expected profit of a potential bidder with signal s and the signals of other competitors are s̃
given the value of N. The seller sets a reserve price r. After paying the entry cost, n active bidders
whose values are higher than r bid in an ascending outcry mechanism, and everyone can bid one
or more times. The highest bidder will win this auction and pay his own bid to obtain the object.
Denote the post-entry value distribution with N potential bidders as F∗(·, s∗N), which can be written
as F∗(v, s∗N) = Pr(V ≤ v|S ≥ s∗N) by definition.

3.2 Identification

We first give our identification assumptions as follows.
Assumption A. (i) Vi, Si are drawn from a joint distribution symmetrically and it satisties:

1. Vi is bounded by V = [v, v], and the joint distribution F(v, s) is continuous in (v, s).
2. If s′ ≥ s, then F(v|s′) ≤ F(v|s).
3. For any j ̸= i, (Vi, Si) ⊥ (Vj, Sj).
4. We normalize the signals Si to be uniformly and marginally distributed on [0, 1], that is, Si ∼

U[0, 1].
(ii) Conditional expectation E[Vi|Si = s] is continuous in s on [0, 1].
(iii) F(v, s|N) = F(v, s) and c(N) = c hold for any N ∈ N .

Parts (i)-(iii) of our Assumption A correspond to Assumptions 1, 2, and 4 of Gentry and Li (2014).
Note that Assumption 3 of Gentry and Li (2014) is satisfied by our second-stage mechanism of as-
cending auctions, and their Assumption 5 holds by applying the identification strategy of Athey and
Haile (2002) to the stage 2 mechanism.

Next, we present our identification strategy. First, the post-entry value distribution is nonpara-
metrically identified by the distribution of winning bids following the order statistic identification
strategy proposed by Athey and Haile (2002), since the equilibrium winning bid is equal to the sec-
ond highest value of all active bidders if there are at least two entrants. Second, under Assumption
A, the conditional value distribution F(v|ŝ) (given signal s being the cutoff ŝ) and the entry cost c are
partially identified from the post-entry value distribution by Gentry and Li (2014)4.

We then present two monotonicity results on the threshold signal and the post-entry value distri-
bution in our auction model.

Lemma 1. Under Assumption A, if N′ > N, then we have (i) s∗N′ ≥ s∗N and (ii) F∗(v, s∗N′) ≤ F∗(v, s∗N) for
each v.

Part (i) of Lemma 1 states that the threshold signal increases in the number of potential bidders N. It
is the last point of Proposition 1 of Gentry and Li (2014). Part (ii) further indicates that the post-entry
value distribution also shows stochastic dominance over the number of potential bidders N, that
is, the post-entry value distribution with a bigger N stochastically dominates that with a smaller N.

4In contrast to the second price sealed bid auctions where all bidders submit their true values, not every bidder can submit
the value as her highest bid in our English auction model due to the constraint in bidding order. However, the bidder with
the highest value will win the last round of competition against the bidder with the second highest value simply by bidding
the second highest value. In that sense, only the transaction price reveals the second-highest value in equilibrium. We use the
strategy of Athey and Haile (2002) to identify the value distribution of the entrants from the distribution of the transaction
price, and then apply the strategy of Gentry and Li (2014) to further identify the bounds of the value distribution of potential
entrants, as well as the bounds of entry cost.
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This stochastic dominance is an implication of Assumption A (i.2) and Proposition 1 of Gentry and
Li (2014).

3.3 Estimation

In this paper, we propose an estimation approach in three steps. In the first step, we estimate the
threshold signal ŝN using a GMM type approach. In the second step, we estimate the post-entry
value distribution F̂∗(v, ŝN) following the identification strategy of Athey and Haile (2002). In the
third step, we estimate the bounds of the conditional value distribution given the signal and the entry
cost following the partial identification strategy of Gentry and Li (2014) when there is no instrumental
variable at the auction level Z that affects the entry cost but not the value distribution.

In the first step, the threshold signal ŝN is estimated using a GMM method. For auctions with N
potential bidders, n = 1, . . . , n (n = N) active bidders may enter and bid.5 The number of actual
bidders n is not observed before the bidders bid. Let Tn with n = 1, . . . , n denote the number of
auctions with n actual bidders. We obtain the estimate of threshold signal ŝN under N as follows:

ŝN = argminsN [(Tn −
T2

C2
Ns(N−2)

N (1 − sN)2
· (1 − sN)

N)2 · 1 {N ≥ 5}

+ (Tn−1 −
T2

C2
NsN(1 − sN)2 · sN(1 − sN)

N−1)2 · 1 {N ≥ 4} (1)

+ · · ·+ (T3 −
T2

C2
NsN(1 − sN)2 · sN−3

N (1 − sN)
3)2]

In the second step, we utilize the identification strategy of Athey and Haile (2002) to obtain an
estimate of the post-entry value distribution F̂∗(v, ŝN) for a fixed N ∈ {2, . . . , N}. In cases with at
least two entrants6, the equilibrium condition implies that F̂∗

n|N(v, ŝN) = φn
(
Ĝn|N(v)

)
, where Ĝn|N(v)

is the estimate of the winning bid distribution with N potential bidders and n actual bidders, and
the function φn(·) is implicitly defined by x = n · φn(x)n−1 − (n − 1) · φn(x)n. Next, we obtain an
estimate of the post-entry value distribution with N potential bidders by averaging all F̂∗

n|N(v, ŝN)

over n = 1, . . . , N as follows:

F̂∗(v, ŝN) =
N

∑
n=1

F̂∗
n|N(v, ŝN) ·

A2
n|N

∑N
n=1 A2

n|N
(2)

where An|N represents the number of auctions with n entrants from N potential bidders. Here, a

weight of wn|N =
A2

n|N
∑N

n=1 A2
n|N

is employed.7.

In practice, the post entry value distribution CDFs with a different number of potential bidders
N can cross at some values of v due to the estimation error in a finite sample. This violates the
stochastic dominance order implied by Lemma 1 which indicates that the CDF of the post-entry value
distribution with a bigger N is always below the one with a smaller N in any v. In this case, we can

5The case of n = 0 corresponds to a failed transaction.
6If there is only one active bidder, she will bid the starting value in equilibrium. But auctions with only one active bidder

are not included in the sample for our estimation.
7Our choice of weights puts more weights on the estimate of F̂∗

n|N(v, ŝN) with large value of An|N than the traditional
weights of simply number of active bidders (instead of its square). But the empirical results do not change significantly if
traditional weights were used.
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adjust the post-entry value distribution estimators so that they satisfy such a stochastic dominance
order over N. One way is to adjust them as F̃∗(v, ŝN) = minN′=2,...,N F̂∗(v, ŝN′) for all N = 2, . . . , N.
The second way is to adjust them as F̃∗(v, ŝN) = maxN′=N,...,N F̂∗(v, ŝN′) for all N = 2, . . . , N. A
third way is to mix the former two ways to keep the stochastic dominance order on N. In particular,
we can also implement a smoothing method of Haile and Tamer (2003) with a tuning parameter
hN = ±

√
TN to approximate the maximum and minimum operators in the above three ways8.

In the third step, with the nonparametric estimates of threshold signal ŝN and post-entry value
distribution F̂∗(v, ŝN), we can firstly obtain the estimates of bounds on conditional value distribution
(given signal ŝ ∈ [0, 1]) F̂+(v|ŝ),F̂−(v|ŝ) as follows:

F̂+(v|ŝ) =
{ ˜̌F+(v|ŝ), i f ŝ ∈ S ,

˜̌F+(v|t−(ŝ)), i f ŝ /∈ S ,
(3)

F̂−(v|ŝ) =
{ ˜̌F−(v|ŝ), i f ŝ ∈ S ,

˜̌F−(v|t+(ŝ)), i f ŝ /∈ S .
(4)

where

˜̌F+(v|ŝ) =

⎧
⎪⎪⎨

⎪⎪⎩

limt↑t−(ŝ)

{
(1−t)F̂∗(v;t)−(1−ŝ)F̂∗(v;ŝ)

ŝ−t

}
,

i f ŝ ∈ S and t−(ŝ) ∈ S ,
1, otherwise,

˜̌F−(v|ŝ) =

⎧
⎨

⎩
limt↑t+(ŝ)

{
(1−ŝ)F̂∗(v;ŝ)−(1−t)F̂∗(v;t)

t−ŝ

}
, i f ŝ ∈ S ,

0, otherwise.

and

t+(ŝ) =

{
in f {t ∈ S|t > ŝ} , i f sup {S} > ŝ,
1, otherwise,

t−(ŝ) =

{
in f {t ∈ S|t < ŝ} , i f sup {S} < ŝ,
0, otherwise.

Secondly, we can estimate the bounds on entry cost ĉ+ and ĉ− as follows9:

ĉ+ =
1
J

J

∑
j=1

ĉ+N , (5)

ĉ− =
1
J

J

∑
j=1

ĉ−N . (6)

8About our adaption in estimation, we mainly follow the identification strategies of Athey and Haile (2002) and Gentry
and Li (2014) to construct our estimators with two exceptions. The first exception is to get an initial estimator of the post-
entry value distribution F̂∗(v, ŝN) by averaging all F̂n|N(v, ŝN), which is estimated by following Athey and Haile (2002)’s
identification strategy over n = 1, . . . , N for a given number N of potential bidders. The second exception is to obtain the
final estimator F̃∗(v, ŝN) of the post-entry value distribution by further adjusting the initial estimator F̂∗(v, ŝN) to satisfy the
stochastic dominance properties over N.

9Gentry and Li (2014) do not deal with the reserve price directly. We do not deal with the reserve price in our estimation
and empirical application, either.
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where J is the number of N, and

ĉ+N =
∫ v

0
[1 − F̂−(y|ŝN)] · [ŝN + (1 − ŝN)F̂∗(y; ŝN)]

N−1dy,

ĉ−N =
∫ v

0
[1 − F̂+(y|ŝN)] · [ŝN + (1 − ŝN)F̂∗(y; ŝN)]

N−1dy.

The consistency of our bound estimators is summarized by the following theorem.

Theorem 1. Let TN be the number of auctions with N potential bidders. Under Assumption A, when
minN=2,...,N TN goes to infinity, we have the following.

(i) For any s ∈ [0, 1], F̂+(v|s), and F̂−(v|s) respectively converge to their true distributions F+(v|s) and
F−(v|s) for any v with probability of one.

(ii) ĉ+ and ĉ−, respectively, converge to their true values c+ and c− with probability of one.

4 A Simulation Study

We next conduct a Monte Carlo experiment to show the finite sample performance of our bound
estimates of conditional value distributions and entry costs.

We adopt the same specification on the joint distribution of value V and signal S as the simulation
study of Marmer et al. (2013). Specifically, we generate (Z1, Z2) by a bivariate normal distribution
with means of zero and variances of one, and the correlation parameter ρ is between 0 and 1. The
signal and value are generated by S = Φ(Z1) and V = Φ(Z2), respectively, where Φ is the standard
normal CDF. Therefore, the conditional value distribution given signal S and the post entry value
distribution are obtained as:

F(v|s) =P(V ≤ v|S) = P(Z2 ≤ Φ−1(v)|Φ−1(S)) = Φ(
Φ−1(v)− ρΦ−1(S)√

1 − ρ2
) (7)

F∗(v|N) =F(v|S ≥ s∗(N)) =
1

1 − s∗(N)

∫ 1

s∗(N)
Φ(

Φ−1(v)− ρΦ−1(s)√
1 − ρ2

)ds (8)

In each experiment, we set potential bidders N = {2, 3, 4, 5, 6}, the numbers of auctions L = 1000
and 2000 , ρ = 0, 0.25, 0.5 and the entry cost c = 0.17. True signal thresholds under different ρ and
N are shown in Table 4.1. In each auction, the value and signal of a potential bidder are generated
by the above Gaussian copula with correlation parameter of ρ. Bidders with signals higher than the
threshold will enter the auction, and their bids are generated by Example 2 in Appendix B of Haile
and Tamer (2003). We set the bid increment ∆ = 0.001 and the probability of jump bidding λ = 0.
Our simulation study has 500 repetitions of such an experiment.

Figures 1 - 3 show the mean estimates and 90% confidence bands of the bounds on the conditional
value distribution given signal S = s with various values of s and ρ and compare them with the true
bounds of the conditional value distribution. Specifically, Figure 1 shows the results with different
values of s and L given ρ = 0, Figure 2 shows the results with different values of s and L given
ρ = 0.25, while Figure 3 shows the results given ρ = 0.5. They show that our bound estimators
perform well in finite samples. Under 1000 auctions, the biases of our bound estimators are relatively
small, and the 90% confidence band contains the true bounds, not far away from them. When the
sample size increases to 2000, both the bias and confidence bands improve significantly. It should be
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noted that the estimated upper bounds are 1 for all values of v ∈ [0, 1] in Figures 1 - 3 (a) and (b). The
true value hence also locates between the upper and lower bounds. Another note is that the upper
and lower bounds are equal to the true conditional value distribution when ρ = 0. In this case, s and
v are uncorrelated, thus the post-entry distribution under different ŝN is exactly the distribution of v.
Therefore, the upper and lower bounds of the conditional value distribution are identical, and both
are the distribution of v.

Table 4.2 show the estimated bounds on entry cost with various values of ρ. It presents the mean
and standard deviation of estimated bounds on entry cost and compares them with the true bounds
under different ρ. It shows that (i) the bound estimates of entry cost have relatively small bias and
standard error under both L = 1000 and L = 2000, and (ii) they decline significantly when the sample
size increases from L = 1000 to L = 2000.
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(b) s = 0.35, ρ = 0, L = 2000, replication = 500
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(c) s = 0.5, ρ = 0, L = 1000, replication = 500
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(d) s = 0.5, ρ = 0, L = 2000, replication = 500
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(e) s = 0.65, ρ = 0, L = 1000, replication = 500
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(f) s = 0.65, ρ = 0, L = 2000, replication = 500

Figure 1: Mean and 90% confidence band of simulated conditional value distribution bounds - ρ = 0
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Table 4.1: True signal threshold

ŝN N = 2 N = 3 N = 4 N = 5 N = 6

ρ = 0 0.010 0.343 0.518 0.621 0.688

ρ = 0.25 0.154 0.415 0.560 0.648 0.706

ρ = 0.5 0.250 0.468 0.592 0.670 0.723

Table 4.2: Estimated entry cost

ρ = 0 ρ = 0.25 ρ = 0.5

True c 0.17 0.17 0.17

L = 1000

c+
true 0.170 0.172 0.175

mean 0.220 0.237 0.249

std. 0.018 0.020 0.022

c−
true 0.170 0.168 0.167

mean 0.120 0.114 0.114

std. 0.014 0.015 0.014

L = 2000

c+
true 0.170 0.172 0.175

mean 0.203 0.218 0.228

std. 0.013 0.015 0.015

c−
true 0.170 0.168 0.167

mean 0.126 0.121 0.120

std. 0.010 0.011 0.010

L = 4000

c+
true 0.170 0.172 0.175

mean 0.192 0.203 0.211

std. 0.009 0.008 0.011

c−
true 0.170 0.168 0.167

mean 0.132 0.127 0.125

std. 0.008 0.008 0.008
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(c) s = 0.5, ρ = 0.25, L = 1000, replication = 500

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

True

UB

LB

U-true

L-true

UB-95

LB-5

(d) s = 0.5, ρ = 0.25, L = 2000, replication = 500
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(e) s = 0.65, ρ = 0.25, L = 1000, replication = 500
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(f) s = 0.65, ρ = 0.25, L = 2000, replication = 500

Figure 2: Mean and 90% confidence band of simulated conditional value distribution bounds - ρ =
0.25
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(a) s = 0.35, ρ = 0.5, L = 1000, replication = 500
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(b) s = 0.35, ρ = 0.5, L = 2000, replication = 500
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(c) s = 0.5, ρ = 0.5, L = 1000, replication = 500
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(d) s = 0.5, ρ = 0.5, L = 2000, replication = 500
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(e) s = 0.65, ρ = 0.5, L = 1000, replication = 500
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(f) s = 0.65, ρ = 0.5, L = 2000, replication = 500

Figure 3: Mean and 90% confidence band of simulated conditional value distribution bounds - ρ =
0.5
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Table 5.1: Estimated entry cost in application

ĉ+ std. ĉ− std.

high appraisal 46.52 98.31 35.40 55.82

middle appraisal 18.94 20.06 12.11 3.48

low appraisal 8.51 4.42 5.19 1.97

5 Empirical results

We apply our estimation method to our data and obtain bound estimates of conditional value distri-
bution as well as entry cost in this section. We divide the data into three groups by appraisal value to
control the auction heterogeneity. After getting the conditional value distribution bound estimates,
we estimate the bounds on entry cost of the three groups. We finally conduct two counterfactual
analysis to explore the revenue change under different auction format or entry cost.

5.1 Bounds on conditional value distribution

We first estimate the bounds on conditional value distribution given the signal. Following Lu and
Perrigne (2008), we choose the appraisal value to control the auction-level heterogeneity, since all
other characteristics are considered when the used car for sale is appraised. Indeed, Table 2.2 also
shows that the appraisal value coefficient has the highest estimate (and t-statistic value) among all
characteristics in the reduced form analysis. We put all auctions with appraisal value below its 33th
percentile (resp. between 33th and 67th percentiles, or above 67th percentile) in a group and call it a
low (resp. middle or high) appraisal value group. For any s in [0,1], the bounds of the conditional
value distribution are estimated by our method given in Section 3, and the results of s = 0.35, 0.5
and 0.65 are shown in Figures 4 to 6. 500 bootstrap repetitions are used to obtain the 90% confidence
bands. The estimation results of the entry cost bounds are given by Table 5.1.

There are three interesting patterns in our estimate results. First, the bounds of the conditional
value distribution are relatively tight for the signal s in the middle, while they are relatively wide for
the signal s close to the boundaries. The upper bound is very close to (resp. relatively far away from)
the lower bound when s = 0.5 (resp. when s = 0.35 and 0.65). Second, the bound estimates imply a
stochastic dominance relation among the value distributions according to the appraisal value. Fix the
value of the signal s, the conditional value distribution of the high appraisal group dominates the one
of the middle appraisal group, and the latter dominates the one of the low appraisal group. Third, the
bound estimates of entry cost also demonstrate a pattern of monotonicity over the appraisal value:
the higher the appraisal value, the higher the entry-cost bound estimates are.

5.2 Counterfactual Analysis

In this section, we propose two counterfactual analysis to explore the revenue difference by the
change in auction format and entry cost. We first switch from ascending auction to first-price sealed
bid auction and compare the winning bid under the two different auctions. Second, we cut and add
the entry cost by half and obtain the bound estimates of revenue change.
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(c) s = 0.65

Figure 4: bounds on conditional value CDF – high appraisal. Note: we display the upper (resp. lower)
bounds in blue solid (resp. red dotted) lines and the 90% confidence band in black dotted lines.

First-price sealed bid auction

We first conduct a counterfactual analysis by switching from the ascending auction to the first-price
sealed bid auction. In each experiment, we first randomly select an auction in the dataset and adopt
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Figure 5: bounds on conditional value CDF – middle level appraisal. Note: we display the upper
(resp. lower) bounds in blue solid (resp. red dotted) lines and the 90% confidence band in black
dotted lines.

its appraisal value to determine which conditional value distribution bound estimates for simulation.
The signal of each bidder is generated from the uniform distribution on [0, 1], and her value is then
drawn from the chosen conditional value distribution bound estimates. Second, we calculate the
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Figure 6: bounds on conditional value CDF – low appraisal. Note: we display the upper (resp. lower)
bounds in blue solid (resp. red dotted) lines and the 90% confidence band in black dotted lines.

signal threshold by zero profit condition for entry and determine the bids of all entrants by the
bidding strategy of first-price sealed bid auction with entry (see, e.g., Perrigne and Vuong, 2021).
We repeat such an experiment for 100,000 times and obtain the 25th, 50th, and 75th percentiles of
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Table 5.2: Comparison of revenue – first-price sealed bid auction v.s. ascending auction

revenue percentiles 25% 50% 75%

first-price sealed bid best scenario (with F̂− and ĉ−) 16.90 39.97 95.75

worst scenario (with F̂+ and ĉ+) 5.08 11.43 25.46

ascending 19.23 44.72 88.10

winning bids.
Table 5.2 reports these results. The best (resp. worst) scenario simulates the values by lower (resp.

upper) bound estimate of conditional value distribution and determine the signal threshold by the
lower (resp. upper) bound estimate of entry cost. It shows that, in general, ascending auctions yield
higher revenue than first-price sealed bid auctions, and the advantage appears mainly in the low and
middle percentiles10. Specifically, the 25th, 50th percentiles of both the best and worst scenarios are
well below the corresponding percentiles of revenue under ascending auction. However, the 75th
percentile of revenue of best scenario is a bit higher than the 75th percentile of ascending auction,
although the 75th percentile of worst scenario is still well below the ascending auction.

The counterfactual results are consistent with the research of Kagel and Levin (2005). Their main
finding is that the winning price of ascending auctions is higher than that of sealed bid auctions
because of the disclosure of bidding prices during the bidding process.

Change of entry cost

We now conduct another counterfactual analysis on the revenue change by cutting or adding the
entry cost by half. Similar to the first counterfactual analysis, we look at the best (resp. worst)
scenario as the one with the lower (resp. upper) bound estimates of conditional value distribution
(to generate value given the signal being a random draw from the uniform distribution on [0, 1]) and
50% (or 150%) of the lower (resp. upper) bound estimate of entry cost.

Table 5.3 reports the first three quartiles of revenue. It shows that revenue improves when the
entry cost is reduced by half. With entry cost cut by half, all revenue quartiles are above those with
original entry cost in both the worst and best scenarios. However, it cannot give a clear conclusion
in the case of adding the entry cost by half. All quartiles of original revenue are well between the
corresponding quartiles of worst and best scenarios.

6 Conclusion

This paper proposes an estimation approach following the constructive identification strategy of
Athey and Haile (2002) and Gentry and Li (2014) in the context of ascending auctions with selective
entry and establishes the consistency of our estimators in a large sample. Our estimation method
is then applied to the alibaba judicial auctions of used cars to recover the bounds of conditional
value distribution and the entry cost. Our bounds estimates of conditional value distribution are
quite tight for a middle-valued signal. In our counterfactual analysis, we find that (i) the ascending

10The revenue equivalence property does not hold here, since the selective entry stage affects the set of active bidders in
bidding stage.
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Table 5.3: Comparison of revenue – cutting or adding entry cost by half

revenue percentiles 25% 50% 75%

best scenario (with F̂−) 50% ĉ− 62.57 84.07 159.57

150% ĉ− 29.40 70.07 127.07

worst scenario (with F̂+) 50% ĉ+ 44.57 76.57 144.80

150% ĉ+ 0 31.38 81.57

actual revenue 19.23 44.72 88.10

auction yields a higher revenue than the first-price sealed bid auction; and (ii) the revenue can be
improved significantly when the entry cost is cut by half.

For further research, the treatment of Gentry and Li (2014) in unobserved heterogeneity still ap-
plies here. Consider the realization of unobserved heterogeneity U = u, by a simple transformation
from submitted bids (B1, . . . , Bn) to realized bids (W1, . . . , WN), the conditional CDF for Wi is identi-
fied:

G∗
ω(b|N; u) = s∗N(u) + [1 − s∗N(u)]G

∗
b (b|N; u) (9)

This is accomplished by applying the identification strategy of Hu et al. (2013). Related articles
include Hu (2008) and An et al. (2010).

Furthermore, identification of s∗N(u) and G∗
b (b|N; u) is implied by identified G∗

ω(Wi|N; u), which
yields bound identification on variables of interest: conditional value distribution F(v|s, u) and entry
cost c(u).
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Appendix

A. Proof of Lemma 1
Proof. Part (i) is the last point of Proposition 1 in Gentry and Li (2014). We provide a proof of part (ii)
as follows:

F∗(v; s∗N) =
1

1 − s∗N

∫ 1

s∗N
F(v|t)dt. (10)

Differentiating F∗(v; s∗N) with respect to s∗N ,we have:

dF∗(v; s∗N)
ds∗N

=

1
1−s∗N

∫ 1
s∗N

F(v|t)dt − F(v|s∗N)
1 − s∗N

(11)

By Intermediate Value Theorem, there is a s̃ ∈ [s∗N , 1] such that 1
1−s∗N

∫ 1
s∗N

F(v|t)dt = F(v|s̃). Under

Assumption A (i.2), s̃ ≥ s∗N , then F(v|s̃) ≤ F(v|s∗N). Thus, dF∗(v;s∗N)
ds∗N

≤ 0, and F∗(v; s∗N) is decreasing
with s∗N . Lemma (ii) is then proved.

B. Proof of Theorem 1
Proof. For any N ∈

{
2, . . . , N

}
and n = 1, . . . , N, ŝN is consistent by equation (1) and the law of large

numbers. In addition, we have

F̂∗
n|N(v, ŝN) = φn

(
Ĝn|N(v)

)
, (12)

where φn(·) is defined by x = n · φn(x)n−1 − (n − 1) · φn(x)n. φn(·) is hence differentiable by the im-
plicit function theorem. The continuous mapping theorem then implies that F̂∗

n|N(v, ŝN) is consistent
given that Ĝn|N(v) is consistent by the law of large numbers. This further implies that F̂∗(v, ŝN) is
consistent in a large sample.

Given consistent estimators of ŝN and F̂∗(v, ŝN), F̂+(·|s), F̂−(·|s), ĉ+, and ĉ− are all consistent by
equations (3)-(6) and the continuous mapping theorem. Therefore, the desired conclusion follows.
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