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ABSTRACT. This paper studies strategic social interactions among agents with correlated

types. The type correlation, which represents the homophily principal in sociology, is not

directly observed from the data. Such a correlation is our main object of interest, as well

as the strategic components. By establishing the existence of a monotone pure strategy

equilibrium, we represent players’ equilibrium strategies as a single–index binary response

model. Next, we establish identification constructively for both strategic components and

the type homophily separately. Furthermore, we propose an estimation procedure that is

computationally simple. Under regularity conditions, the strategic component estimator is

shown to be
√

n–consistent and the kernel estimator of the type homophily converges uni-

formly at a nonparametric rate. Monte Carlo experiments show that our inference procedure

works well in finite samples.

Keywords: Social interactions, homophily, copula, single–index, kernel estimation

Date: Thursday 28th January, 2016.
∗We gratefully acknowledge Quang Vuong for the guidance and advice. We also thank Jason Abrevaya,
Chunrong Ai, Stefan Hoderlein, Shakeeb Khan, Brendan Kline, Qi Li, Isabelle Perrigne, Robin Sickles, Xun
Tang, Yahong Zhou, and seminar participants at UT Austin, the Rice University and Shanghai University of
Finance and Economics for providing helpful comments.
†(corresponding author) Department of Economics, Shanghai University of Finance and Economics, P.R.
China, nliu@shufe.edu.cn.
‡Department of Economics, The University of Texas at Austin, h.xu@austin.utexas.edu.

1

MAILTO:NUL130@PSU.EDU
MAILTO:HUX100@PSU.EDU
mailto:nliu@shufe.edu.cn
mailto:h.xu@austin.utexas.edu


1. INTRODUCTION

This paper studies semiparametric estimation of strategic social interactions among agents

with correlated types. Our model can be viewed as a natural extension of Manski (1975)’s

binary threshold crossing model to the game theoretic setting with asymmetric information.

In particular, each player’s decision depends on her expectations on other players’ choices,

and vice versa. In the presence of such a mutual dependence, inference could be difficult to

infeasible (see Manski, 1993). We focus on a situation in which agents have complementary

payoffs (i.e., agents benefit from choosing the same behavior) and their types are positively

regression dependent.1 Crucially, we show that the equilibrium strategy can be represented

as a single–index binary response model. Therefore, we can apply the results in the single–

index binary response model literature to our social interaction model. In particular, our

identification and estimation strategy follows Klein and Spady (1993).

This paper contributes to the existing empirical game literature in two respects. First, our

model does not require private information (i.e. type) to be independent (or conditionally

independent) across players, which serves as the key assumption for identification strategies

in the current literature, e.g., Aguirregabiria and Mira (2007) and Bajari, Hong, Krainer,

and Nekipelov (2010).2 Allowing type dependence is crucially important for empirical

concerns, particularly in the social interaction context. The type independence assumption

is convenient for inference but meanwhile it imposes strong model restrictions as well

— players’ choices must be conditionally independent, which conflicts with the herding

observations in sociology. In sociology, the dependence structure of types is of interest by

itself. As is well known, similarity breeds connection (see McPherson, Smith-Lovin, and

Cook, 2001), which is formulated as the homophily principle. By such a notion, friendship–

based interactions should occur among people who have similar/common characteristics and

positively correlated private tastes. Because the correlation of private types is not directly

1Following the convention, a player’s private information is denoted as her type, see, e.g., Fudenberg and
Tirole (1991).
2Exceptions include Aradillas-Lopez (2010); Liu, Vuong, and Xu (2013); Wan and Xu (2014) and Xu (2014).
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observed from the data, it becomes a challenge that whether we can identify it from those

observed behaviors among friends. Note that both homophily and strategic effects can cause

the herding behavior in a society group. In this paper, we develop a method that can identify

both of them separately.

In this paper, we characterize the dependence of players’ types by the copula function of

the joint distribution. Under weak conditions, we establish the nonparametric identification

of the copula function, which is the conditional probabilities of players’ joint choices

given their marginal choice probabilities. Moreover, suggested by Guerre, Perrigne, and

Vuong (2000), we propose a nonparametric kernel estimator of the copula function, which

is shown to be uniformly consistent at a suboptimal nonparametric rate. Investigating

how the conditional probability of players’ joint choices varies with their marginal choice

probabilities is novel in the discrete game literature.

Second, we make no parametric assumptions on the joint distribution of types, which

distinguish our paper from most of the current empirical discrete game literature, e.g., Xu

(2014). In a semiparametric setup, Wan and Xu (2014) establish partial identification of

payoff coefficients when types are positively regression dependent, and further achieve

point identification under an additional full support condition on regressors. They suggest a

maximum–score–type estimator that converges at 3
√

n–rate. In contrast, we achieve point

identification of structural parameters under much weaker support conditions. Furthermore,

we develop a Klein–Spady type estimator for the strategic component that converges at the

regular
√

n–rate. The key intuition for our point identification and faster convergence rate is

due to the observation that the equilibrium beliefs can be nonparametrically identified as

derivatives of conditional moments.

Similar to Liu, Vuong, and Xu (2013), a key to our method is to focus on the class

of monotone pure strategy BNEs, which is a desirable solution concept for empirical

applications. Monotonicity has been explicitly or implicitly imposed by the empirical game

literature, see e.g. Guerre, Perrigne, and Vuong (2000), Brock and Durlauf (2001) and

Bajari, Hong, Krainer, and Nekipelov (2010). In this paper, we first establish the existence
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of such kind of equilibria involving conditions that naturally hold in the context of social

interactions. Specifically, we require the payoff be complementary and players’ types are

positively (regression) dependent,3 which have been endorsed by experimental observations

in sociologies; see e.g. Easley and Kleinberg (2010). With monotonicity, then we show that

the equilibrium strategies can be represented as a single–index binary response model.

The rest of the paper is organized as follows. In Section 2, we setup our game model and

establish the existence of monotone pure strategy BNEs. In Section 3 and 4, we discuss the

semiparametric identification and estimation of the structural model, respectively. Section 5

studies the finite sample performance of our estimator using Monte–Carlo experiments.

2. MODEL

Following Brock and Durlauf (2001), we consider an I–player binary game to model

social interactions. Formally, each player, i ∈ {1, · · · , I}, simultaneously chooses a binary

decision Yi ∈ {0, 1}. Binary action space naturally fits a wide range of social phenomena,

such as adolescent risky behaviors (e.g. substance use), staying in or dropping out of school,

college attendance, entry or withdrawal from the labour force, etc. The payoff function is

specified as follows:

πi(Y, Xi, Ui) =

 X′i βi + αi ∑j 6=i Yj −Ui, if Yi = 1;

0, if Yi = 0.

In above payoff, Xi ∈ Rd is a vector of individual characteristics that are publicly observed

by all players; The error term Ui ∈ R is player i’s private payoff shock, i.e., it is observed

only by i but not by other players. Note that the zero payoff for action 0 is a normalization.

For expositional simplicity, let X ≡ (X′1, · · · , X′I)
′ and U ≡ (U1, · · · , UI)

′. Moreover,

following the convention, we assume the (conditional) distribution FU|X is assumed to be

common knowledge of the game. Therefore, player j does not directly observe i’s private

payoff shock Ui, but knows how Ui is distributed given j’s information Uj and X.

3See Bulow, Geanakoplos, and Klemperer (1985) and Castro (2007) for the notion of strategic complements
and positively regression dependent, respectively.
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In the payoff function, αi ∈ R+ and βi ∈ Rd are player–specific parameters of our

interests. In particular, the coefficient αi measures the strength of the strategic interactions.

We require αi to be non-negative, which implies strategic complementarity or the super-

modularity (see e.g. Athey, 2001) of the game. Such a restriction naturally follows the

observations in sociology on social interactions: friends benefit from choosing the same

decision (see e.g. McPherson, Smith-Lovin, and Cook, 2001).

In the discrete game literature, it is commonly assumed that players’ private informa-

tion (U1, · · · , UI) are (conditionally) independent of each other. Such an assumption

is convenient and effectively simplifies the identification and estimation of the structural

model. Social interaction models, however, focus on the distinction between peer effects

and homophily. The former explains the similarity of friends’ decisions as a result of social

interactions, while the latter justifies the similarity as the outcome of friendship selection —

“Similarity breeds connection” (McPherson, Smith-Lovin, and Cook, 2001). Therefore, we

make the following assumption.

Assumption A (Homophily). Conditional on X, (U1, · · · , UI) are positively regression

dependent: P(Uj ≤ uj|X = x, Ui = ui) is decreasing in ui for i 6= j and (x, uj) ∈ SXUj .

Assumption A requires positive dependence among players’ payoff shocks (U1, · · · , UI). In

particular, this condition holds if (U1, · · · , UI) are positive affiliated (see e.g. Castro, 2007).

To characterize the statistical dependence, alternatively one could also use the correlation

coefficient, which however does not fully disclose the dependence structure unless we focus

on some particular parametric families of the joint distribution.

Combined with the non–negative peer effects, Assumption A implies the equilibrium

strategies are monotone functions of errors, which simplifies the characterization of the

equilibrium. In particular, the Bayesian Nash Equilibrium (BNE) solution concept requires

each player i maximizes her expected payoff as follows:

Yi = 1
[

X′i βi + αi ∑
j 6=i

P(Yj = 1|X, Ui)−Ui ≥ 0
]
, (1)
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where 1[·] is the indicator function, and the conditional probability P(Yj = 1|X, Ui) is

called as player i’s equilibrium “beliefs” on j’s decision (conditional on i’s information). In

an equilibrium solution, eq. (1) holds for i = 1, · · · , I, simultaneously.

Note that Athey (2001)’s single crossing conditions (SCC) are satisfied in our setting: For

each player i = 1, · · · , I, whenever all other players use monotone strategies, player i’s

expected payoff function satisfies Milgrom and Shannon (1994)’s single crossing property

of incremental returns. To see this, let {u∗j (X) ∈ R : j 6= i} be an arbitrary vector

in RI−1. Then, we can show that player i’s payoff difference under decision 1 and 0,

X′i βi + αi ∑j 6=i P
[
Uj ≤ u∗j (X)|X, Ui

]
−Ui, is decreasing in Ui. Under additional weak

conditions, Athey (2001) shows that the class of games with the SCC conditions hold admit

monotone pure strategy BNEs. In our model, in particular, player i’s equilibrium strategy s∗i
is a threshold function:

s∗i (X, Ui) = 1
[
Ui ≤ u∗i (X)

]
, (2)

for some function u∗i : Rd×I → R. In the empirical game literature, threshold–type

strategies have also been used in the seminal paper by Aradillas-Lopez (2010).

Assumption B. The conditional distribution of U given X is absolutely continuous w.r.t.

the Lebesgue measure and has positive and continuous density function fU|X.

Assumption B is weak and standard in the literature.

Lemma 1. Suppose assumptions A and B hold. The game admits a monotone pure strategy

BNE, where player i’s equilibrium strategy is characterized by eq. (2).

An important benchmark for the monotonicity of the equilibrium has been established

under the assumption that (U1, · · · , UI) are mutually independent, which however rules

out homophily effects in social actions.4

4It is worthpointing out that Lemma 1 is silent about the existence of non–monotone strategy BNEs. The
monotone pure strategy BNE, if exists, is a natural solution concept in many economics contexts, e.g., auction
and nonlinear pricing, due to its great tractability. Given the existence of a monotone pure strategy equilibrium,
it is less interesting to look at any non–monotone strategy equilibrium which is far more complicated, even if
it exists. Throughout, we assume that a monotone pure strategy BNE is played under conditions in Lemma 1.
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Under assumptions A and B, the threshold u∗i (X) that defines the monotone pure strategy

in the equilibrium should satisfy the following condition:

X′i βi + αi ∑
j 6=i

P[Uj ≤ u∗j (X)|X, Ui = u∗i (X)]− u∗i (X) = 0. (3)

Equation (3) is intuitive: player i with the threshold type u∗i (X) should be indifferent

between action 1 and 0. Let φ∗ij(X) = P
[
Uj ≤ u∗j (X)|X, Ui = u∗i (X)

]
and φ∗i (X) =

∑j 6=i φ∗ij(X). Then, the BNE solution can be rewritten as

Yi = 1
[
Ui ≤ X′i βi + αiφ

∗
i (X)

]
, ∀i = 1, · · · , I. (4)

In the next section, we establish the nonparametric identification of φ∗i (·) under weak

conditions. Hence, eq. (4) is essentially a single–index model, which serves as the basis for

our identification and estimation analysis.

It is worthpointing out that multiple equilibria could exist (see e.g. Brock and Durlauf,

2001).5 Following the convention, we assume that the same equilibrium is getting played in

the data generating process. In other words, the equilibrium selection mechanism depends

on the public state variables X in a deterministic manner.

3. IDENTIFICATION

Recently, Liu, Vuong, and Xu (2013) establish nonparametric identification of discrete

Bayesian games. With the linear–index payoff structure in our setting, we extend their results

and develop a constructive identification strategy that leads to a simple estimation procedure.

In our model, the structural parameters of interests include the coefficient αi in the strategic

component and the copula function CU of U. The recent empirical game literature has

focused on the parametric or semiparametric identification and estimation of the former;

see, e.g., Brock and Durlauf (2001), Aradillas-Lopez (2010), Bajari, Hong, Krainer, and

Nekipelov (2010) and Wan and Xu (2014). In applications of sociology, the latter deserves

more attention since it measures the homophily of players’ unobserved preference shocks.

5Kasy (2012) studies identification and estimation of the number of equilibria in a general context.
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We now propose a three–step identification strategy: First, we identify βi by following the

single–index model literature; see e.g. Powell, Stock, and Stoker (1989), Klein and Spady

(1993) and Ichimura (1993). Next, we identify the equilibrium beliefs φ∗i (·) nonparametri-

cally as derivatives of conditional moments. Up to our knowledge, such an identification

result is new in the literature. In the last step, we establish the identification of strategic

component coefficient αi and the copula function CU.

To begin with, we make the following assumptions.

Assumption C. The public state variable X is independent of payoff shocks, i.e., X⊥U.

Assumption D. ‖βi‖ = 1 for i = 1, · · · , I.

Assumption E. βi1 6= 0 for i = 1, · · · , I. Moreover, Xi1 is continuously distributed on

an interval given X−i1 ≡ {Xi2 · · ·Xid; X−i}, which is a vector of either discrete and/or

continuous random variables. Let fXi1|X−i1
be the density for the continuous variable Xi1

conditional on X−i1.

Assumption F. For i = 1, · · · , I, the matrix E(XiX′i) has the full rank.

Assumption C is strong but indispensable. See e.g. Aguirregabiria and Mira (2007). Under

assumption C, we rewrite the equilibrium condition (3) by

X′i βi + αi ∑
j 6=i

FUj|Ui
(u∗j (X)|u∗i (X))− u∗i (X) = 0, for i = 1, · · · , I, (5)

where FUj|Ui
denotes the conditional CDF of Uj given Ui. Therefore, we have u∗i (X) =

u∗i (X′1β1, · · · , X′I β I). Here we abuse our notation by letting u∗i (·) : RI → R.6 Moreover,

by assumption B and the implicit function theorem, u∗i (·) is continuously differentiable in

the indices (X′1β1, · · · , X′I β I). Therefore, we have

E(Yi|X) =
∫

1{Ui ≤ u∗i (X′1β1, · · · , X′I β I)}dPUi = E(Yi|X′1β1, · · · , X′I β I), (6)

6Similarly, we also let φ∗ij(·) : RI → R wherever it applies.
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which is also continuously differentiable in all the indices.

Assumptions D to F are fairly standard in the binary response model literature; see e.g.

Manski (1975); Klein and Spady (1993); Lewbel (1998). In particular, assumption D is a

normalization. Assumption E requires one argument of Xi is continuously distributed given

all the other state variables. This assumption can be relaxed at the expense of longer proofs,

as discussed in Horowitz (1998). Assumption F is a standard rank condition.

Lemma 2. Suppose assumptions A to F hold. Then, βi is identified for i = 1, · · · , I.

As a matter of fact, our proof follows the identification argument in Klein and Spady (1993).

Next, we discuss identification of equilibrium beliefs φ∗i . For each s ∈ RI and j 6= i, let

mi(s) = E
[
Yi|(X′1β1, · · · , X′I β I) = s

]
,

gij(s) = E
[
YiYj|(X′1β1, · · · , X′I β I) = s

]
.

By assumptions B and C, both mi and gij are continuously differentiable functions.

Assumption G. For any j 6= i, we have

∂

∂sj
mj(X′1β1, · · · , X′I β I) ·

∂

∂si
mi(X′1β1, · · · , X′I β I)

6= ∂

∂si
mj(X′1β1, · · · , X′I β I) ·

∂

∂sj
mi(X′1β1, · · · , X′I β I), a.s..

Assumption G is a testable rank condition given that mi and gij can be estimated from the

data.

To motivate our identification strategy, note that for any i 6= j,

∂

∂si
gij(s) = P

[
Uj ≤ u∗j (s)|Ui = u∗i (s)

]
· fUi(u

∗
i (s)) ·

∂

∂si
u∗i (s)

+ P
[
Ui ≤ u∗i (s)|Uj = u∗j (s)

]
· fUj(u

∗
j (s)) ·

∂

∂si
u∗j (s)

= P
[
Uj ≤ u∗j (s)|Ui = u∗i (s)

]
· ∂

∂si
mi(s) + P

[
Ui ≤ u∗i (s)|Uj = u∗j (s)

]
· ∂

∂si
mj(s).
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Therefore, we have

∂

∂si
gij(s) = φ∗ij(s) ·

∂

∂si
mi(s) + φ∗ji(s) ·

∂

∂si
mj(s), (7)

∂

∂sj
gij(s) = φ∗ij(s) ·

∂

∂sj
mi(s) + φ∗ji(s) ·

∂

∂sj
mj(s). (8)

By assumption G, we can solve φ∗ij and φ∗ji as two unknowns from eqs. (7) and (8). Specifi-

cally,

φ∗i (X) = ∑
j 6=i

∂
∂si

gij(s) · ∂
∂sj

mj(s)− ∂
∂sj

gij(s) · ∂
∂si

mj(s)
∂

∂si
mi(s) · ∂

∂sj
mj(s)− ∂

∂sj
mi(s) · ∂

∂si
mj(s)

∣∣∣∣∣
s=(X′1β1,··· ,X′I β I)

. (9)

Note that above identification strategy is related to the copula approach developed in Liu,

Vuong, and Xu (2013).

Moreover, the identification of αi directly follows eq. (3). Because E(Yi|X) = FUi(u
∗
i (X))

is a monotone function of u∗i (X), it follow that{
Xi −E

[
Xi|E(Yi|X)

]}′
βi + αi

{
φ∗i (X)−E

[
φ∗i (X)|E(Yi|X)

]}
= 0,

Therefore, we have

αi = −E

{
Xi −E

[
Xi
∣∣E(Yi|X)

]
φ∗i (X)−E

[
φ∗i (X)

∣∣E(Yi|X)
]}′ βi.

In the above argument, conditional on E(Yi|X), φ∗i (X) needs to have variations, which is

true due to assumptions A and E. This rank condition can also be verified by the data.

Finally, by the monotonicity of the equilibrium strategies and assumption C, we have

CU(p) ≡ P
[
U1 ≤ F−1

U1
(p1), · · · , UI ≤ F−1

UI
(pI)

]
= E

[ I

∏
i=1

Yi
∣∣E(Y|X) = p

]
,

for all p ∈ SE(Y|X). Note that E(Y|X) = E(Y|X′1β1, · · · , X′I β I) in above expression.
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4. ESTIMATION

In this section, we discuss the estimation of the game theoretic model with homophily.

For expositional simplicity, we focus on a two–player game, i.e., I = 2, which has been

focused in the empirical game literature (see e.g. Tamer, 2003; Aradillas-Lopez, 2010).

It is straightforward to extend the proposed estimation procedure to the case of I > 2.

Throughout, we will use subscript t to denote the t–th observation. Let Xt = (X′t1, X′t2)
′

and Yt = (Yt1, Yt2)
′. Moreover, let {(X′t, Y′t )

′ : t = 1, · · · , n} be an i.i.d. random sample.

Given the identification of equilibrium beliefs φ∗i by (9), our estimation takes a two–step

procedure. In the first step we estimate βi at the parametric
√

n–rate and then the belief

function φ∗i (·) at a uniform rate no slower than n1/4. The
√

n–consistent estimator of βi

helps mitigate the curse of dimensionality that arises from X, while the uniform convergence

rate, n1/4 or faster, of the nonparametric estimator is needed for obtaining the
√

n–consistent

estimator of the strategic component αi. In the next step, we first use Klein and Spady

(1993)’s pseudo MLE method to estimate αi, and then follow Guerre, Perrigne, and Vuong

(2000) to estimate the copula function CU nonparametrically.

4.1. Estimation of βi and φ∗i . Let Bi ⊆ Rd be the parameter space for βi. For notional

simplicity, we first make the following assumption on the distribution of X.

Assumption H. FX−i|Xi
= FX−i|X′i βi

.

Assumption H requires the dependence of X−i on Xi through the linear index X′i βi. Under

this condition, we can rewrite the multiple–index equation (6) to a single–index model, i.e.,

E(Yi|Xi) =
∫

E(Yi|X)dPX−i|Xi
=
∫

E(Yi|X′1β1, X′2β2)dPX−i|X′i βi
= E(Yi|X′i βi),

where the first and the last steps come form the law of iterated expectation. It should be

noted that assumption H can be relaxed at the expositional expense of estimating the double

index model (see e.g. Ichimura and Lee, 1991).
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Following the single–index model literature, we can estimate βi at the
√

n–rate. In

particular, we use Klein and Spady (1993)’s pseudo MLE approach: for i = 1, 2, let

β̃i = argmaxbi∈Bi

n

∑
t=1

(τ̃t/2)
[
Yti ln p̃2

ti(bi) + (1−Yti) ln(1− p̃ti(bi))
2
]

,

where τ̃t is a trimming sequence introduced for technical reasons and

p̃ti(bi) =
∑s 6=t YsiKβ

(
X′sibi − X′tibi

)
+ δ̃1n(bi)

∑s 6=tKβ

(
X′sibi − X′tibi

)
+ δ̃n(bi)

,

in which Kβ(u) = Kβ(u/hβ)/hβ with Kβ : R→ R and hβ as Parzen–Rosenblatt kernel

and bandwidth, respectively, and δ̃1n and δ̃n are trimming sequences. Under the conditions

in Klein and Spady (1993), we have

β̃i = βi + Op(n−1/2). (10)

Note that one could also use alternative methods developed by e.g. Powell, Stock, and

Stoker (1989) and Ichimura (1993) to estimate βi at the same convergence rate.

It should also be noted that Klein and Spady (1993) requires a pilot estimator β̂P
i that

converges to βi no slower than n1/3. One could apply Wan and Xu (2014)’s modified

maximum score type estimator, which requires a strong condition that the first argument

in the index have an unbounded support. A second approach is to replace the “likelihood

trimming” in Klein and Spady (1993) with the high order moments restrictions suggested

in e.g. Van de Geer (1990). The same asymptotic properties can be established for the

untrimmed estimator under these additional moment conditions. This is also supported by

the Monte Carlo evidence in Klein and Spady (1993) which is indeed obtained without any

trimming.

Now we are ready to use (9) for estimating the equilibrium beliefs φ∗i . The estimation of

derivatives of mi and gij simply follows the kernel derivative estimation literature, albeit that

their arguments contain the unknown parameter βi that has been estimated at the
√

n–rate
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in the first stage. Under conditions introduced later, we will show that the first stage bias

does not matter for the asymptotics of the φ∗i ’s estimator defined below.

Under assumption E, (X′1β1, X′2β2) is continuously distributed. Let fX′1β1,X′2β2
: R2 →

R+ be the density function of (X′1β1, X′2β2). We then estimate fX′1β1,X′2β2
(X′t1β1, X′t2β2)

and its partial derivatives with respect to the i–th argument, respectively, by

f̂t =
1

n− 1 ∑
s 6=t
Kφ

(
(Xs1 − Xt1)

′ β̃1, (Xs2 − Xt2)
′ β̃2
)
,

f̂ti =
1

n− 1 ∑
s 6=t

∂

∂ui
Kφ

(
(Xs1 − Xt1)

′ β̃1, (Xs2 − Xt2)
′ β̃2
)
,

where Kφ(u) = Kφ(u/hφ)/hφ with Kφ : R2 → R as a Parzen–Rosenblatt kernel and

hφ as a bandwidth. Under standard kernel estimation conditions, we can establish the

consistency of the estimators, i.e.,

f̂t
p→ fX′1β1,X′2β2

(X′t1β1, X′t2β2), f̂ti
p→ ∂

∂si
fX′1β1,X′2β2

(X′t1β1, X′t2β2).

Next, we rewrite φ∗i (Xt) as follows:

φ∗i (Xt) =

∂
∂si

g12(s) · ∂
∂sj

mj(s)− ∂
∂sj

g12(s) · ∂
∂si

mj(s)
∂

∂si
mi(s) · ∂

∂sj
mj(s)− ∂

∂sj
mi(s) · ∂

∂si
mj(s)

∣∣∣∣∣
s=(X′t1β1,X′t2β2)

≡ ξti

λt
, (11)

where the sub–index j is denoted as the other player, i.e., j = −i, and ξti and λt are defined

as the numerator and denominator, respectively. Let ϕi(t) = E
[
Yi|(X′1β1, X′2β2) =

t
]
· fX′1β1,X′2β2

(t) and ψ(t) = E
[
Y1Y2|(X′1β1, X′2β2) = t

]
· fX′1β1,X′2β2

(t). Then the partial

derivatives in (11) can be rewritten as: for i, j ∈ {1, 2},

∂mi(s)
∂sj

=
1

f 2
X′1β1,X′2β2

(s)
·
[∂ϕi(s)

∂sj
· fX′1β1,X′2β2

(s)− ϕi(s) ·
∂ fX′1β1,X′2β2

(s)

∂sj

]
,

∂g12(s)
∂sj

=
1

f 2
X′1β1,X′2β2

(s)
·
[∂ψ(s)

∂sj
· fX′1β1,X′2β2

(s)− ψ(s) ·
∂ fX′1β1,X′2β2

(s)

∂sj

]
.
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Moreover, we can estimate the partial derivatives ∂
∂sj

ϕi(X′1tβ1, X′2tβ2) and ∂
∂si

ψ(X′1tβ1, X′2tβ2)

respectively by

ϕ̂tij =
1

n− 1 ∑
s 6=t

Ysi ·
∂

∂uj
Kφ

(
(Xs1 − Xt1)

′ β̃1, (Xs2 − Xt2)
′ β̃2
)
,

ψ̂ti =
1

n− 1 ∑
s 6=t

Ys1Ys2 ·
∂

∂ui
Kφ

(
(Xs1 − Xt1)

′ β̃1, (Xs2 − Xt2)
′ β̃2
)
.

Thus, we define our estimator of φ∗i (Xt) by

φ̂∗ti =
ξ̂ti · f̂t

4 + δ̆ti1

λ̂t · f̂t4 + δ̆t
,

where ξ̂ti and λ̂t are nonparametric estimators of ξti and λt, respectively, defined as: for

j = −i,

ξ̂ti =
1
f̂t4
·

∣∣∣∣∣∣ ψ̂ti f̂t − ψ̂t f̂ti ϕ̂tji f̂t − ϕ̂tj f̂ti

ψ̂tj f̂t − ψ̂t f̂tj ϕ̂tjj f̂t − ϕ̂tj f̂tj

∣∣∣∣∣∣, λ̂t =
1
f̂t4
·

∣∣∣∣∣∣ ϕ̂t11 f̂t − ϕ̂t1 f̂t1 ϕ̂t21 f̂t − ϕ̂t2 f̂t1

ϕ̂t12 f̂t − ϕ̂t1 f̂t2 ϕ̂t22 f̂t − ϕ̂t2 f̂t2

∣∣∣∣∣∣,
and δ̆ti1 and δ̆t are trimming sequences to be formally defined later. Note that we can drop

the trimming sequences in the φ̂∗ti if λt · ft
4 is assumed to be uniformly bounded below from

zero.

To establish the asymptotics for φ̂∗ij, we make the following assumptions.

Assumption I. β̃i = βi + Op(n−1/2) for i = 1, 2.

Assumption J. Functions mi(s) and gij(s) are continuously differentiable for all i, j ∈
{1, 2}. Moreover, all partial derivatives of mi(·) and gij(·) are uniformly bounded, i.e.

{‖Dsmi(·)‖, ‖Dsgij(·)‖} < c, for some c > 0.

Assumption K. The bandwidth hφ satisfies hφ = (ln n/n)1/12.
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Assumption L. The kernel function Kφ : R2 → R is a symmetric Parzen–Rosenblatt kernel

that satisfies: max
{
‖Dr

uK(u)‖ ,
∫
‖Dr

uK(u)‖ du
}
< c for r = 0, 1, 2, 3, 4 and

∫
ur1

1 ur2
2 Kφ(u)dx = 0 if 1 ≤ r1 + r2 ≤ 3,

< ∞ if r1 + r2 = 4.

The support of Kφ is a convex subset of R with nonempty interior, with the origin as an

interior point.

Assumption M. For some ε > 0, let δ̆ti1 ≡ hε
φ · ezti

1+ezti and δ̆t ≡ hε
φ · ez′t

1+ez′t
, where zti ≡

h−ε/4
φ ·

(
hε/5

φ − ξ̂ti
)

and z′t ≡ h−ε/4
φ ·

(
hε/5

φ − λ̂t
)
.

Assumptions J to L are standard in the kernel derivative estimation literature (see e.g.

Pagan and Ullah, 1999) and assumption M simply follows Klein and Spady (1993), which

adjusts estimates for those observations at which numerator and denominator of estimated

probabilities tend to zero. Note that assumption L requires a high order kernel since we

demand the second stage estimator to uniformly converge at a rate faster than n1/4, which is

crucial for the final estimator of αi to have the regular
√

n–convergence rate.

Lemma 3. Suppose eq. (11), assumptions C, E, G and I to M hold. Let Vn ≡ {x : λ(x, β) >

hε/5
φ }. Then, for i = 1, 2,

sup
t

∣∣φ̂∗ti − φ∗i (Xt)
∣∣ · 1(Xt ∈ Vn) = Op

(
h−ε

φ (ln n/n)−1/3).
Proof. See Appendix A.3 �

Note that the uniform convergence results only hold for Xt ∈ Vn, which converges to the

support of X as n goes large. Therefore, in the next stage estimation, we will downweight

those observations outside of Vn. Unlike the likelihood trimming in Klein and Spady (1993),

this additional trimming does not depend on the unknown parameter to be estimated in the

next stage. Hence, it does not cause essential difficulties to the next stage estimation. In
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principal, we can choose ε arbitrary small such that the uniform convergence of the beliefs

estimator is close to the optimal rate.

4.2. Estimation of αi and CU. We first discuss the estimation of the strategic component

αi. Let Ai ⊆ R be the parameter space for αi. Moreover, we denote θi = (αi, β′i)
′. Let

further Θi = Ai × Bi and Θ = Θ1 ×Θ2.

Following Klein and Spady (1993), we define our objective function by

Q̂ni(ci; τ̂) =
1
n

n

∑
t=1

(τ̂t/2) ·
{[

Yti ln p̂2
ti(ci) + (1−Yti) ln(1− p̂ti(ci))

2
]}

where

p̂ti(ci) =
∑s 6=t

[
Ysi · Kα

(
(Xsi − Xti)

′bi + ai(φ̂
∗
si − φ̂∗ti)

)]
+ δ̂t1(ci)

∑s 6=tKα

(
(Xsi − Xti)′bi + ai(φ̂

∗
si − φ̂∗ti)

)
+ δ̂t(ci)

and τ̂t, δ̂t1, δ̂t are trimming sequences defined similarly to Klein and Spady (1993), and

Kα = Kα(u/hα)/hα with Kα : R→ R and hα as Parzen–Rosenblatt kernel function and

bandwidth, respectively. The proposed estimator is then given by

θ̂i = argmaxci∈Θi
Q̂ni(ci; τ̂). (12)

Note that our Klein–Spady type estimator uses the generated regressor φ̂∗i that uniformly

converges to equilibrium beliefs φ∗i ; see Lemma 3. Then, we can deal with the approximation

errors in a similar way to e.g. Guerre, Perrigne, and Vuong (2000).

Here we introduce some notation and briefly motivate our estimator. For i = 1, 2, let

νi(ci) = X′ibi + aiφ
∗
i (X) and νti(ci) = X′tibi + aiφ

∗
i (Xt). For y = 0, 1, let gi(y, νi(ci)) ≡

P(Yi = y|X′ibi + aiφ
∗
i (X)) · fνi(ci)

(νi(ci)) and gi(νi(ci)) ≡ ∑y∈{0,1} gi(y, νi(ci)) =

fνi(ci)
(νi(ci)). Then we have

pi(ci) ≡ E(Yi|νi(ci)) =
gi(1, νi(ci))

gi(νi(ci))
.
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Let further

ĝi(y, νti(ci)) =
1

n− 1 ∑
s 6=t

[
1(Ysi = y) · Kα

(
(Xsi − Xti)

′bi + ai(φ̂
∗
si − φ̂∗ti)

)]
,

and ĝi(νti(ci)) = ∑y∈{0,1} ĝi(y, νti(ci)). By definition, ĝi(y, νti(ci)) and ĝi(νti(ci)) non-

parametrically estimate gi(y, νti(ci)) and gi(νti(ci)), respectively. Therefore, we estimate

E(Yti|νti(ci)) by

p̂ti(ci) =
ĝi(1, νti(ci)) + δ̂t1(ci)

ĝi(νti(ci)) + δ̂t(ci)
.

The trimming sequences δ̂t(ci) and δ̂t1(ci) will be defined similarly as those in Klein and

Spady (1993) to ensure the uniform convergence of p̂i(ci) to pi(ci).

Assumption N. The parameter space Θ is compact and the support SX is bounded. More-

over, the true parameter θ belongs to the interior of Θ.

Assumption O. For i = 1, 2, there exists no proper linear subspace of Rd+1 have probabil-

ity 1 under the probability distribution FXi,φ∗i (X).

The first half of assumption N ensures that choice probabilities are bounded away from

zero so that the likelihood function is bounded. The second half is standard in the literature.

Assumption O strengths conditions in assumption E. In particular, if the support of FXi1|X−i1

is an interval with the length larger than 1, then assumption E implies assumption O. Since

the variations of φ∗i (X) are less than 1.

Assumption P. Let h−ε′
φ = op(n−1/6) with hφ and ε′ defined in assumption K and Lemma 3

respectively.

Assumption P implies that the beliefs estimator φ̂∗i should uniformly (over Vn) converge to

φ∗i at a rate no slower than n1/4, which is required for the
√

n–consistency of α̂i.

Assumption Q. The bandwidth hα satisfies n−1/(6+2ι) < hα < n−1/8 for some small

ι > 0.
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Assumption R. The kernel Kα(·) : R→ R is a symmetric function that integrates to one,

satisfies
∫

u2Kα(u)du = 0 and
∫

u4Kα(u)du < ∞, and for some c > 0,

max
{
|Dr

uKα(u)| ,
∫
|Dr

uKα(u)| du
}
< c, (r = 0, 1, 2, 3, 4).

The support of Kα is a convex subset of R with nonempty interior, with the origin as an

interior point.

Assumption S. Let δ̂ty(ci) ≡ hι
φ · eω(ci)

1+eω(ci)
with y = 0, 1, and ω(ci) = h−ι/4

φ ·
(
hι/5

φ −
ĝyt(ci)

)
. Let further δ̂t = δ̂t0 + δ̂t1.

For ι > 0 and z ∈ R+, let τ(z, ι) ≡
{

1 + exp
[
(hι/5

α − z)/hι/4
α

]}−1
.

Assumption T. The trimming sequence employed to down weight observations has the

form τ̂t ≡ τ̂t0τ̂t1τ̂
φ
t , where

τ̂ty = τ(ĝi(y, ν̂ti(θ
P
i )), ι′), τ̂

φ
t = τ(λ̂(Xt; β̃i), ι′),

in which θP
i is a preliminary consistent estimator satisfying ‖θP

i − θi‖ = Op(n−1/3) and

ι′ ∈ (0, ι) with ι defined in assumption S.

Assumptions Q to S simply follow Klein and Spady (1993). Assumption T is modified from

Klein and Spady (1993): we introduce the trimming sequence τ̂
φ
t for those observations

with a small denominator (i.e. less than hι′/5
α ) in the estimation of φ∗i . It should be noted

that this trimming does not depend on the current stage estimator θ̂i.

Theorem 1. Suppose the conditions in Lemma 3 and assumptions N to T hold. Then

√
n(θ̂i − θi)

d−→ N(0, Σ),

where

Σ ≡ E

{
f 2
Ui

(
u∗i (X)

)
· (φ∗i (X), X′i)

′(φ∗i (X), X′i)

FUi

(
u∗i (X)

) [
1− FUi

(
u∗i (X)

)] }−1

.

Proof. See Appendix A.4 �
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Lastly, we turn to the estimation of the copula function CU by using ??. Our estimation

strategy follows Guerre, Perrigne, and Vuong (2000)’s two–step approach: First, we estimate

(E(Yt1|Xt), E(Yt2|Xt)) by m̂t ≡ (m̂t1, m̂t2)
′:

m̂ti =
ˆ̂ϕti +

ˆ̂δti1
ˆ̂ft +

ˆ̂δt

, i = 1, 2,

where ˆ̂δti1 and ˆ̂δt as trimming sequences and

ˆ̂ϕti =
1

n− 1 ∑
s 6=t

Ysi · Km
(
(Xs1 − Xt1)

′ β̂1, (Xs2 − Xt2)
′ β̂2
)
,

ˆ̂ft =
1

n− 1 ∑
s 6=t
Km
(
(Xs1 − Xt1)

′ β̂1, (Xs2 − Xt2)
′ β̂2
)
.

in which Km = Km(u/hm)/hm with a bandwidth hm and a kernel function Km : R2 → R.

Note that we could use β̃i instead of β̂i in the estimates ˆ̂ϕti and ˆ̂ft, which does not change

the asymptotic properties of ĈU established below as long as β̃i is
√

n–consistent.

Next, we define our estimator of CU as follows: for each p ∈ S ◦
E(Y|X) such that

fE(Y|X)(p) > 0, let

ĈU(p) =
∑n

t=1 Yt1Yt2Kc
(
m̂t − p

)
∑n

t=1Kc
(
m̂t − p

)
where Kc = Kc(u/hc)/hc with a bandwidth hc and a kernel function Kc : R2 → R.

Clearly, the nonparametric estimator ĈU is an asymptotically biased estimator of CU at the

boundaries of the support SE(Y|X). Because this boundary effect, we need to exclude the

estimates near the boundaries.

We follow Guerre, Perrigne, and Vuong (2000) to establish the asymptotics of the non-

parametric estimator ĈU.

Assumption U. For some small positive number ε′′ with 0 < ε′′ < R − 2, let ˆ̂δti1 ≡
hε′′

m · eζti1

1+eζti1
and ˆ̂δt ≡ hε′′

m · eζt

1+ez̃t
, where ζti1 = h−ε′′/4

m · (hε′′/5
m − ˆ̂ϕti) and ζt = h−ε′′/4

m ·

(hε′′/5
m − ˆ̂ft).
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Assumption V. The copula function CU and marginal quantile function F−1
Ui

is R + 1 times

continuously differentiable with bounded derivatives on the support SE(Y|X) and SYi|X,

respectively, and with R ≥ 2.

Assumption W. The kernels Km(·) and Kc(·) are symmetric functions that integrate to one

with bounded support and twice continuously bounded derivatives. Moreover,∫
ur1

1 ur2
2 K(u)dx = 0 if 1 ≤ r1 + r2 ≤ R,

< ∞ if r1 + r2 = R + 1,

for K = Km and K = Kc.

Assumption X. The bandwidths hm and hc are of the form: hm, hc ∝ (ln n/n)1/(2R+4).

Assumption U defines the trimming sequence, which is needed when the denominator

is close to zero. Alternatively, we can drop assumption U by focusing on a compact

subset of the support SE(Y|X) such that the density fX′1β1,X′2β2
is bounded away from zero.

Assumptions V to X are standard in the kernel estimation literature; see e.g. Pagan and

Ullah (1999). Note that applying the implicit function theorem to eq. (5), assumption V

implies that mi(·) is also R + 1 times continuously differentiable with bounded derivatives

on the support SE(Y|X).

Theorem 2. Suppose conditions in Theorem 1 and assumptions U to X hold. Then, for any

closed inner subset P of SE(Y|X) such that infp∈P fE(Y|X)(p) > 0, we have

sup
p∈P
|Ĉu(p)− Cu(p)| = O

(
(ln n/n)(R−ε′′)/(2R+4)).

Proof. See Appendix A.5. �

When the marginal choice probabilities mi(X) are observed, the optimal uniform conver-

gence rate for estimating CU is (n/ ln n)R/(2R+I) with I = 2; (see e.g. Stone, 1982). In

our case, because the conditioning variable mi(Xt) is nonparametrically estimated, then
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we don’t obtain the optimal uniform convergence rate for our estimator ĈU. Instead, ĈU

converges at a rate (i.e. (n/ ln n)(R−ε′′)/(2R+I+2)) that is slightly slower than the optimal

one. This result is also consistent with Guerre, Perrigne, and Vuong (2000).

5. MONTE CARLO SIMULATIONS

In this section, we use Monte Carlo experiments to illustrate the performance of our

estimator in finite samples. Let I = 2, d1 = d2 = 2 and Xi ∈ R2 for i = 1, 2, where Xi

has a mean zero normal distribution with identity covariance matrix. Let U1 and U2 be

independent of X and conform to a joint mean zero normal distribution with unit variances

and correlation parameter ρ = 0.5. All results are based on 1000 replications.

Moreover, let βi = (1, 1)′ and αi = 1 for i = 1, 2. It can be shown that a (unique)

monotone strategy BNE exists under this design, i.e., for each x, there exist cutoff values

u∗1(x) and u∗2(x), such that player i chooses 1 whenever her private type ui ≤ u∗i (x). We

compute u∗i (·) by solving the following equations for each Xt in the sample:

u∗1 = β11x11 + β12x12 + α1Φ

(
u∗2 − ρu∗1√

1− ρ2

)
, u∗2 = β21x21 + β22x22 + α2Φ

(
u∗1 − ρu∗2√

1− ρ2

)
,

where Φ(·) is the c.d.f of standard normal distribution.

Table 1 shows the composition of one random sample with n = 500. In our first–step

TABLE 1. Sample composition

Choice profile Percentage
Y = (1, 1) 46.0%
Y = (1, 0) 15.8%
Y = (0, 1) 17.8%
Y = (0, 0) 20.4%

estimation, βi is obtained by the recipe of Klein and Spady (1993). Specifically, we use

second order biweight kernel and choose bandwidth according to Silverman’s rule-of-thumb.

Table 2 reports the summary statistics for β̃1, including the sample mean (MEAN), median

(MEDIAN), the standard deviation (SD), and root mean squared error (RMSE). It shows
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that the first–step estimator of β1 performs relatively well. As sample size increases, both

the bias and standard deviation decreases.

TABLE 2. Finite–Sample Behavior of β̃1

n TRUE MEAN MEDIAN SD RMSE
250 1.00 1.0109 0.9969 0.1739 0.1742
500 1.00 1.0063 0.9984 0.1160 0.1161

1000 1.00 1.0038 0.9987 0.0829 0.0830
2000 1.00 1.0037 1.0018 0.0547 0.0548

For the estimation of φ∗i , we employ the fourth order biweight product kernel, i.e.,

Kφ(u1, u2) = kφ(u1) · kφ(u2) where kφ(ui) = 7
4(1− 3u2

i ) ·
15
16(1− u2

i )
2 · 1(|ui| ≤ 1)

and choose hφ = 4.40 · σ̂ ·
(
n/log(n)

)−1/10 where σ̂ is the estimated standard error of the

regressor.

Figure 1 plots φ∗1 , φ∗2 and their kernel estimates under sample size of n = 1000. For

presentation purpose, we fix x1 = (0, 0), but a similar pattern holds for other values of

x1. Figures 1a and 1b show functions φ∗1 and φ∗2 , and their estimates. Figure 1c provides

the infeasible estimate of φ∗1 , which uses the true value of (β1, β2) in estimation, and our

estimate of φ∗1 . It shows that the mean of these two estimates of belief φ∗1 coincides.

In the second step, we use the same second order biweight kernel and rule-of-thumb

bandwidth to implement the Klein and Spady (1993) estimation procedure.

Tables 3 and 4 report the finite sample performance of α̂1 and β̂1, respectively. The

finite sample performance of α̂2 and β̂2 are similar and hence omitted here. In Tables 3

and 4, the infeasible estimator of α1 or β1 is obtained by plugging in the true values of

equilibrium beliefs φ∗1 in the second step estimation. From these two tables, our estimator

behaves well under finite sample sizes. As sample size increases, both the bias and standard

deviation decrease as expected, and the standard deviation decreases roughly at the
√

n rate.

In addition, the performance of feasible estimator approaches the infeasible one when the

sample size increases. Finally, the second step estimator of β1 has some improvement from

the first step one when the sample size is small.
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(A) True and estimated belief φ∗1 (·)
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(B) True and estimated belief φ∗2 (·)
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(C) Feasible v.s. infeasible φ̂∗1 (·)

FIGURE 1. Kernel estimates of φ∗1(·) and φ∗2(·) with x1 = (0, 0).

TABLE 3. Mean, median, SD and RMSE for estimating α1

Our Estimator Infeasible Estimator
n TRUE MEAN MEDIAN SD RMSE TRUE MEAN MEDIAN SD RMSE

250 1.00 0.9555 0.9409 0.4317 0.4337 1.00 0.9917 0.9778 0.3440 0.3440
500 1.00 0.9938 0.9927 0.3037 0.3037 1.00 1.0128 1.0164 0.2436 0.2438

1000 1.00 0.9857 0.9801 0.2075 0.2079 1.00 1.0054 1.0028 0.1678 0.1678
2000 1.00 0.9937 0.9953 0.1422 0.1422 1.00 1.0005 0.9992 0.1101 0.1101

TABLE 4. Mean, median, SD and RMSE for estimating β1 in last step

Our Estimator Infeasible Estimator
n TRUE MEAN MEDIAN SD RMSE TRUE MEAN MEDIAN SD RMSE

250 1.00 1.0098 0.9995 0.1732 0.1734 1.00 1.0078 1.0013 0.1579 0.1580
500 1.00 1.0056 0.9957 0.1147 0.1148 1.00 1.0046 1.0007 0.1079 0.1080

1000 1.00 1.0037 0.9981 0.0832 0.0832 1.00 1.0042 0.9994 0.0777 0.0778
2000 1.00 1.0034 1.0010 0.0547 0.0548 1.00 1.0035 1.0013 0.0509 0.0510

We finally provide the estimate of copula CU in Figure 2 with p2 = 0.5. It is obtained

under the sample size of n = 1000. It shows that our copula estimate behaves well. In

particular, the point–wise average is close to the true copula, and the 90% confidence band

roughly shows the shape of the true copula function. Clearly, our estimator is less precise

when it comes close to the boundaries.
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FIGURE 2. True and estimated copula CU with p2 = 0.5.
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APPENDIX A. PROOFS OF IDENTIFICATION RESULTS

A.1. Proof of Lemma 1. The proof simply follows (Wan and Xu, 2014, Lemma 1). �

A.2. Proof of Lemma 2.

Proof. Our proof follows the identification argument in Klein and Spady (1993). First, we show that

P(Yi = 1|X′i βi = si, X−i = x−i) is strictly increasing in si for any x−i ∈ SX−i . Note that

P(Yi = 1|X′i βi = si, X−i = x−i) = P(Yi = 1|X′i βi = si, X′−iβ−i = x′−iβ−i)

= FUi(u
∗
i (si, x′−iβ−i)).

Moreover, by eq. (3) we have

si + αi ∑
j 6=i

P[Uj ≤ u∗j (s)|X = x, Ui = u∗i (s)]− u∗i (s) = 0

which has an invertible Jacobian matrix under assumption A. To see this, note that the Jacobian

matrix is strictly positive (resp. negative) when I is even (resp. odd). Therefore, ∂u∗j (s)/∂sj > 0. It

follows that P(Yi = 1|X′i βi = si, X−i = x−i) is strictly increasing in si.

Next, suppose β̃i and βi are observationally equivalent. Because

P(Yi = 1|X = x) = P(Yi = 1|X′i βi = x′i βi, X−i = x−i)

where the LHS is identified. Then for any (xi, x−i), (x̄i, x−i) ∈ SX, we have

x′i β̃i ≥ x̄′i β̃i if and only if x′i βi ≥ x̄′i βi.

In other words, there exists a strict increasing function T : R→ R, such that

x′i β̃i = T(x′i βi), ∀xi ∈ SXi .

By assumption E, T has to be the identity function. Therefore, we have X′i βi = Xi β̃i. By assump-

tions D and F, β̃i = βi. �

A.3. Proof of Lemma 3.
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Proof. Note that the kernel estimators are defined by leaving the t–th observation out, which is

common in the literature. Such a modification does not make a difference for the asymptotic behavior

of the estimator. For expositional brevity, in what follows we will denote our estimator of φ∗i (x) by

the standard kernel estimator (i.e. without leaving one observation out).

Moreover, here we abuse our notation a little bit without causing any confusion. Let φ∗i (x; b) be

the equilibrium beliefs under the generic parametric value b ∈ B, i.e.,

φ∗i (X; b) =
∂

∂si
g12(s; b) · ∂

∂sj
mj(s; b)− ∂

∂sj
g12(s; b) · ∂

∂si
mj(s; b)

∂
∂si

mj(s; b) · ∂
∂sj

mj(s; b)− ∂
∂sj

mi(s; b) · ∂
∂si

mj(s; b)

∣∣∣∣∣
s=(X′1b1,X′2b2)

where mi(s; b) = E(Yi|X′1b1 = s1; X′2b2 = s2) and g12(s; b) = E(Y1Y2|X′1b1 = s1; X′2b2 = s2).

Let φ̂∗i (x; b) be the nonparametric estimator φ̂i(x) by replacing β̃ with b (including the trimming

part).

Next step is standard. Note that conditional on Xi ∈ Vn, the denominator of φ̂∗i (x; b) is large

enough and the adjustment trimming sequence tends exponentially to zero, and hence negligible. By

e.g. Klein and Spady (1993, Lemmas 2–4), we have uniformly on Vn and B:

hε
φ

∣∣φ̂∗i (x; b)− φ∗i (x; b)
∣∣ = Op

(( ln n
nh4

φ

)1/2
+ h4

φ

)
= Op

(
(ln n/n)1/3

)
.

Because β̃ is a consistent estimator of β and the numerator of ψ∗i is a smooth function with uniformly

bounded derivatives (by assumption J), we have the following stochastic equicontinuity:

φ̂∗i (x; β̃) = φ̂∗i (x; β) + op(n−1/2)

uniformly on x. Thus, uniformly on Vn,∣∣φ̂∗i (x; β̃)− φ∗i (x; β)
∣∣ = Op

(
h−ε

φ (ln n/n)−1/3).
It concludes the proof by noting that φ̂ti(Xt) = φ̂∗i (Xt; β̃) and φ∗i (x; β) = φ∗i (x).

A.4. Proof of Theorem 1. The consistency simply follows the uniform convergence of φ̂∗i to φ∗i

(noting that the trimming is negligible asymptotically) and the proof for Theorem 3 in Klein and

Spady (1993), which is omitted here. We now focus on the asymptotic normality of its limiting

distribution. By a similar argument, the Hessian metric converges in probability to its limit. Hence,
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it remains to show the convergence of the gradient. For expositional simplicity, we suppress the

subindex i in the following discussion.

Our proof is a modification of Klein and Spady (1993, Lemma 6). Let p̄t(θ), τ̄t, ḡ(1, νt(θ))

and ḡ(νt(θ)) be infeasible estimators, which are defined as p̂t(θ), τ̂t, ĝ(1, νt(θ)) and ĝ(νt(θ)),

respectively, with φ̂∗t replaced by φ∗t . The gradient can be written as a weighted sum of residuals:

Ĝ(θ) = n−1
n

∑
t=1

τ̂tr̂tŵt

where r̂t ≡ [Yt − p̂t(θ)]/êt, êt ≡ ĝ(νt(θ))[ p̂t(θ)(1− p̂t(θ))] and ŵt ≡ ĝ(νt(θ))[∂ p̂t(θ)/∂c]c=θ .

Let further et ≡ [g(νt(θ)) + δn(νt(θ))] · [pt(θ)(1 − pt(θ))], rt ≡ [Yt − pt(θ)]/et and wt ≡

g(νt(θ))[∂pt(θ)/∂c]c=θ . By definition,

E(rt|Xt) = E(rt|νt(θ)) = E(wt|νt(θ)) = 0.

Moreover, we define r̄t, ēt and w̄t as r̂t, êt and ŵt, respectively, with p̂t(θ), τ̂t, ĝ(1, νt(θ)) and

ĝ(νt(θ)) replaced by p̄t(θ), τ̄t, ḡ(1, νt(θ)) and ḡ(νt(θ)), respectively.

Following Klein and Spady (1993), it suffices to show

1√
n

n

∑
t=1

τ̂tµ̂t −
1√
n

n

∑
t=1

τtµt = op(1).

Because

1√
n

n

∑
t=1

τ̂tµ̂t −
1√
n

n

∑
t=1

τtµt

=
1√
n

n

∑
t=1

τt(µ̂t − µt) +
1√
n

n

∑
t=1

(τ̂t − τt)µt +
1√
n

n

∑
t=1

(τ̂t − τt)(µ̂t − µt) ≡ A + B + C.

Hence, it suffices to show A, B and C are all op(1). Our proof is similar to Klein and Spady (1993)

with small modification due to the generated regressor φ̂∗t . Due to the similarity, here we only

illustrate by showing A = op(1).
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Note that τi essentially restricts all densities to be no smaller than O(hι′′/5
α ), o < ι′′ < ι′. By

definition,

A =
1√
n

n

∑
t=1

τt(µ̂t − µt) =
1√
n

n

∑
t=1

τt(r̂t − rt)wt +
1√
n

n

∑
t=1

τt(r̂t − rt)(ŵt − wt)

+
1√
n

n

∑
t=1

τtrt(ŵt − wt) ≡ A1 + A2 + A3.

It follows that

A1 =
1√
n

n

∑
t=1

τt(r̂t − r̄t)wt +
1√
n

n

∑
t=1

τt(r̄t − rt)wt ≡ A11 + A12,

A3 =
1√
n

n

∑
t=1

τtrt(ŵt − w̄t) +
1√
n

n

∑
t=1

τtrt(w̄t − wt) ≡ A31 + A32,

and

A2 =
1√
n

n

∑
t=1

τt(r̄t − rt)(w̄t − wt) +
1√
n

n

∑
t=1

τt(r̂t − r̄t)(w̄t − wt)

+
1√
n

n

∑
t=1

τt(r̄t − rt)(ŵt − w̄t) +
1√
n

n

∑
t=1

τt(r̂t − r̄t)(ŵt − w̄t) ≡ A21 + A22 + A23 + A24.

Klein and Spady (1993) show that A11, A21, A31 are all op(1). Hence, it suffices to show A12,

A22, A23, A24, and A32 are all op(1).

The proof for A12 and A32 simply follows Klein and Spady (1993), the proof for A1 and A3,

respectively. Moreover, note that

|A22| ≤ n1/2 · sup
t≤n

τt|w̄t − wt| · sup
t≤n

τt|r̂t − r̄t|.

By Klein and Spady (1993, Lemma 4), Lemma 4 and assumption Q, we have A22 = op(1). Similarly,

we can show A23 = op(1) and A24 = op(1).

All the rest simply follows Klein and Spady (1993, Theorem 3-4). �

Lemma 4. Under the conditions stated in Theorem 1, we have

sup
t≤n

τt|r̂t − r̄t| = op(n−1/2h−ι−1
α ).
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Proof. Without loss of generality, let t = 1. For expositional simplicity, in what follows we implicitly

treat ν1 as a constant and all expectations are conditioning on ν1.

Note that τ1 ∈ [0, 1]. By the definition of ĝ(y, ν), ĝ(ν) and assumption S, we have

τ1|r̂1 − r̄1| ≤
Ch−ι

α

(n− 1)hα

∣∣∣ n

∑
`=2

[
Kα

( ν̂` − ν̂1

hα

)
− Kα

(ν` − ν1

hα

)]∣∣∣,
for some constant C > 0.

Let ∆̂` = ν̂` − ν`. We now have

τt|r̂t − r̄t| ≤
Ch−ι

α

(n− 1)h2
α

∣∣∣ n

∑
`=2

K′α
(ν` − ν1

hα

)[
∆̂` − ∆̂1 −E(∆̂` − ∆̂1|ν1, ν`)

]∣∣∣
+

Ch−ι
α

(n− 1)h2
α

∣∣∣ n

∑
`=2

K′α
(ν` − ν1

hα

)
E(∆̂` − ∆̂1|ν1, ν`)

∣∣∣
+

Ch−ι
α

2(n− 1)h3
α

n

∑
`=2

{∣∣∣K′′α(ν` − ν1 + κ(∆̂` − ∆̂1)

hα

)∣∣∣ · (∆̂` − ∆̂1)
2

}
≡ C1 + C2 + C3.

By Newey and McFadden (1994), let µ0(ν1) ≡ E
{

1
h2

α
K′α
(

ν`−ν1
hα

)
E(∆̂` − ∆̂1|ν1, ν`)|ν1

}
.

1
(n− 1)h2

α

n

∑
`=2

K′α
(ν` − ν1

hα

)[
∆̂` − ∆̂1 −E(∆̂` − ∆̂1|ν1, ν`)

]
=

1
(n− 1)

n

∑
`=2

[
1
h2

α

K′α
(ν` − ν1

hα

)
E(∆̂` − ∆̂1|ν1, ν`)− µ0(ν1)

]
+ op(n−1/2h−1

α ).

Because

E

{
1

(n− 1)

n

∑
`=2

[
1
h2

α

K′α
(ν` − ν1

hα

)
E(∆̂` − ∆̂1|ν1, ν`)− µ0(ν1)

]}2

=
1

n− 1
E

{
1
h2

α

K′α
(ν2 − ν1

hα

)
E(∆̂2 − ∆̂1|ν1, ν2)

}2

≤ 1
(n− 1)

∫ 1
h3

α

[
K′α(u)

]2 fν(ν1 + hαu)du ·Op(‖∆̂`‖2) = op(n−1h−2
α ).
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Thus, C1 = op(n−
1
2 h−ι−1

α ). Moreover,

1
(n− 1)h2

α

n

∑
`=2

K′α
(ν` − ν1

hα

)
E(∆̂` − ∆̂1|ν1, ν`)

=
1

(n− 1)

n

∑
`=2

[
1
h2

α

K′α
(ν` − ν1

hα

)
E(∆̂` − ∆̂1|ν1, ν`)− µ0(ν1)

]
+ µ0(ν1)

=
∫ 1

hα
K′α(u)q(ν1 + hαu)du + op(n−1/2h−1

α )

=
∫

Kα(u)q′(ν + hαu)du + op(n−1/2h−1
α ).

where q(ν2) = E(∆̂`− ∆̂1|ν1, ν2) · fν(ν2). Clearly, q(ν1 + hαu) = Op(‖∆̂`‖ · hα) = op(n−1/2h−1
α )

and we have
∫
|uKα(u)|du < +∞. Hence, C2 = op(n−

1
2 h−ι−1

α ).

Next, note that

E

∣∣∣∣∣ 1
(n− 1)h3

α

n

∑
`=2

{∣∣∣K′′α(ν` − ν1 + κ(∆̂` − ∆̂1)

hα

)∣∣∣(∆̂` − ∆̂1)
2

}∣∣∣∣∣
=

1
h3

α

E

∣∣∣K′′α(ν` − ν1 + κ(∆̂` − ∆̂1)

hα

)
(∆̂`− ∆̂1)

2
∣∣∣ = 1

h3
α

E sup
|ε|≤n−

1
4

∣∣∣K′′α(ν` − ν1 + ε

hα

)
(∆̂`− ∆̂1)

2
∣∣∣

≤ 1
h2

α

∫
sup

|ε|≤n−1/4

∣∣∣K′′α (u +
ε

hα

)∣∣∣ · T(ν1 + hαu)du

where κ ∈ [0, 1] and T(ν2) = E[(∆̂` − ∆̂1)
2|ν1, ν2] · fν(ν2). Note that T(ν1 + hαu) = T(ν1) +

hαu · T′(ν†
1 ) and T(ν1) = 0, where ν†

1 is between ν1 and ν1 + hαu. Because supν ‖T′(ν)‖ =

op(n−1/2) by Lemma 3. Therefore,

E|C3| ≤ Ch−ι
α ·
[∫ ∣∣∣K′′α (u)u∣∣∣du + o(1)

]
· o(n−1/2h−1

α ) = o(n−1/2h−ι−1
α ). �

A.5. Proof of Theorem 2. Let V ′n = {x : fX′1β1,X′2β2
(x′1β1, x′2β2) > hε/5

m }. Moreover, we denote

m̂i(x; b) be the nonparametric estimator m̂i(x) by replacing β̃ with b (including the trimming part).

Let further C̃U be the infeasible estimator defined by

C̃U(p) =
∑n

t=1 Yt1Yt2Kc
(
m(Xt)− p

)
∑n

t=1Kc
(
m(Xt)− p

) .
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Similarly to the proof of Lemma 3, conditionally on Xi ∈ V ′n , the denominator of m̂ti is large

enough and the adjustment trimming sequence tends exponentially to zero, and hence negligible. By

a similar argument to Klein and Spady (1993, Lemmas 2–4), we have uniformly on V ′n and B,

hε
m
∣∣m̂∗i (x; b)−mi(x; b)

∣∣ = Op

(( ln n
nh2

m

)1/2
+ h2R

m

)
.

By assumption X, we have

sup
x∈V ′n ,b∈B

∣∣m̂∗i (x; b)−mi(x; b)
∣∣ = Op

(( ln n
n

) R+1−ε
2R+4

)
.

The rest of proof follows Guerre, Perrigne, and Vuong (2000): First, by the standard kernel

estimation literature, we have the uniform convergence of C̃U to CU on any subset P at the rate

(n/ ln n)R/(R+4), which is slower than the optimal uniform convergence rate due to the suboptimal

bandwidth hm. Therefore, it suffices to show

sup
p∈P
|Ĉu(p)− C̃U(p)| = Op

(
(ln n/n)(R−ε′′)/(2R+4)).

Because for each p ∈ P, the denominator of the estimator converges to fE(Y|X)(p), which is larger

than c > 0, then it suffices to show

sup
p∈P

∣∣∣n−1
n

∑
t=1

Yt1Yt2Kc
(
m̂t − p

)
−n−1

n

∑
t=1

Yt1Yt2Kc
(
m(Xt)− p

)
)
∣∣∣ = Op

(
(ln n/n)(R−ε′′)/(2R+4)),

and

sup
p∈P

∣∣∣n−1
n

∑
t=1
Kc
(
m̂t − p

)
− n−1

n

∑
t=1
Kc
(
m(Xt)− p

)
)
∣∣∣ = Op

(
(ln n/n)(R−ε′′)/(2R+4)).

For expositional simplicity, we only show the latter.

Following the proof in Guerre, Perrigne, and Vuong (2000, Theorem 3), we have

∣∣∣n−1
n

∑
t=1
Kc
(
m̂t − p

)
− n−1

n

∑
t=1
Kc
(
m(Xt)− p

)
)
∣∣∣

≤ Op
(
(ln n/n)(R−ε′′)/(2R+4))× 1

nh2
c

n

∑
t=1

2

∑
i=1

∣∣∣∂Kc

∂pi

(m(Xt)− p
hc

)∣∣∣
+ Op

(
(ln n/n)(2R−2ε′′−2)/(2R+4))× sup

p

∣∣∣ ∂2Kc

∂p∂p′
(p)
∣∣∣.
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Because R− 2− ε′′ > 0 and 1
nh2

c
∑n

t=1 ∑2
i=1

∣∣∣ ∂Kc
∂pi

(
m(Xt)−p

hc

)∣∣∣ uniformly converges to fE(Y|X)(p)∑2
i=1
∫
| ∂Kc

∂pi
(u)|du,

then supp∈P

∣∣∣n−1 ∑n
t=1Kc

(
m̂t − p

)
−n−1 ∑n

t=1Kc
(
m(Xt)− p

)
)
∣∣∣ = Op

(
(ln n/n)(R−ε′′)/(2R+4)).

�
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