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Abstract

Arellano and Bonhomme (2017) proposed a quantile selection model to study the evolution of wage

inequality in the UK, which specifies a binary selection equation and requires an exclusion restriction. In

this paper we propose a quantile selection model with a more informative censored selection equation.

Following Heckman (1974, 1979), Heckman and Sedlacek (1990), and Blundell et al. (2003), among others,

the employment selection equation could be equivalently modelled by an hours worked equation through

a censored selection. In our model, both the outcome and selection equations are specified as semiparamet-

ric quantile regressions, and no exclusion restriction is needed. We propose a quantile selection estimator

that was applied to study wage inequality using the same data as in Arellano and Bonhomme (2017).

Among our major findings based on our method, after adjusting for sample selection, (i) there is signifi-

cant negative selection among males, in contrast to the finding of significant positive selection by Arellano

and Bonhomme (2017); (ii) similar to Arellano and Bonhomme (2017), we also find positive selection for

females, but our selection effects are more significant than those of Arellano and Bonhomme (2017) (See

Section 5 for more details); (iii) the gender wage gap has remained large and accounting for selection

leads to much smaller reduction in the gender wage gap over time, compared with the observed wage

distribution and that of Arellano and Bonhomme (2017).
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JEL classification: C14, C31, J31

1 Introduction

The quantile regression framework developed by Koenker and Bassett (1978) has become important empiri-

cal tools for economic analysis. By allowing varying quantile regression coefficients across different regions

of the conditional distribution of the outcome variable, the quantile regression provides a comprehensive

characterization of the entire conditional distribution. In labor economics, quantile regression techniques

have been extensively applied to study the evolution of wage inequality and wage gaps, see, e.g., Juhn et
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al. (1993), Chamberlain (1994), Buchinsky (1994), Gosling et al. (2000), Blau and Kahn (2017), Maasoumi

and Wang (2019), Chernozhukov et al. (2019), among others.

Non-random sample selection has played an important role in economics since the pioneering work of

Gronau (1974) and Heckman (1974, 1979). For example, for the study of wages and employment, Arellano

and Bonhomme (2017) noted that only the wages of employed individuals are observed, so conventional

measures of wage gaps or wage inequality may be biased and wage inequality for those at work may

provide a distorted picture of market-level wage inequality. To overcome such bias and recover the latent

wage distribution, Arellano and Bonhomme (2017) proposed a quantile regression model subject to sample

selection where sample selection is modelled via the bivariate cumulative distribution function, or copula,

of the errors in the outcome and the selection equations. Furthermore, they proposed a two-step method

for the estimation of the copula parameter, and the final step for the estimation for the entire family of

quantile regression coefficient process given a consistent estimator for the copula parameter. Arellano and

Bonhomme (2017) then applied their method to study the evolution of wage inequality and wage gaps in

the UK for the period 1978-2000 using the data from the Family Expenditure Survey (FES). Among their

major findings are the strong bias correction effects for males at the bottom of the wage distribution and

significant reduction in gender wage gap, especially at the lower part of the wage distribution, compared

with the observed wage distribution without correcting for sample selection.

There are two important features associated with the main estimation procedure in Arellano and Bon-

homme (2017). First, the binary selection equation is specified as a parametric model in Arellano and

Bonhomme’s (2017) estimation.1 Such a parametric specification is largely due to convenience, which in

general is not justified by economic theory. On the other hand, nonparametric treatment of the selection

equation is not feasible due to the large number of regressors in most studies on wage gaps and wage

inequality, including that of Arellano and Bonhomme (2017).

Another feature of their approach is the requirement of an exclusion restriction that some relevant vari-

ables in the selection equation to be excluded from the outcome equation; in particular, they impose the

exclusion restriction that the out-of-work benefit income is independent of the unobservables that deter-

mine wages. However, Blundell et al. (2007) found evidence against this particular exclusion restriction,

and argued that the welfare benefits system in the UK would lead to a positive relationship between wages

and this particular excluded variable. Indeed, it is well recognized in the literature that exclusion restric-

tions typically have little justification in most empirical studies, see, e.g., Krueger and Whitmore (2001), Lee

(2009), among others. In a related study, Chernozhukov et al. (2022) also investigated the wage evolution

in the UK based on the FES data using distribution regression with sample selection. They also adopted the

probit specification for the binary selection equation and relied on the same exclusion restriction.

Issues arising from the above two features can be addressed by a censored selection mechanism, a more

informative selection mechanism than the binary selection. In this paper we consider the censored quantile

selection model by exploiting extra information provided by the censored selection equation. Specifically,

1Arellano and Bonhomme (2017) also considered identification and estimation with nonparametric specification for the selection
equation. However, they mainly focused on the estimation procedure which requires the probit specification for the selection equation.
They discussed various extensions with nonparametric selection equation, but these extensions are generally not very practical, due
to curse of dimensionality. In addition, the probit specification imposes a strong homoscedasticity assumption, which typically does
not hold in practice.

2



following Heckman (1974, 1979), Heckman and Sedlacek (1990), and Blundell et al. (2003), among others,

the employment selection equation could be equivalently modelled by an hours worked equation through

a censored selection equation when the information on hours worked is available. According to the opti-

mal labor supply model in Blundell, Reed and Stoker (2003) and Blundell, MaCurdy, and Meghir (2007), the

structural residuals in the participation and hours equations are the same in those canonical labor supply

models.2 In practice, the information on hours worked is typically available in common data sets used to

study wage inequality, such as the FES and the CPS, our quantile selection model consists of a latent quan-

tile wage equation and a censored hours worked quantile selection equation. Consequently, we consider

the estimation of the censored selection model where both the outcome equation and the selection equation

are specified as semiparametric quantile regressions, without imposing the exclusion restriction.

Similar to Arellano and Bonhomme (2017), we propose a two-step estimator for the copula parameter.

But we differ from Arellano and Bonhomme (2017) in the way the moment conditions are constructed. In

particular, for a pair of quantile indices that correspond to the selection equation and outcome equation

respectively, we select a subsample for which the moment conditions correspond to a rotated quantile

function. Once we obtain an estimate for the copula parameter, the quantile regression coefficients for the

outcome equation can be obtained by solving standard quantile regressions. In addition, unlike Arellano

and Bonhomme (2017), with censored selection equation, identification based on moment conditions in

general does not require an exclusion restriction. This feature makes our approach particularly appealing

since excluded variables are generally difficult to find in empirical applications.

We apply our method to study wage inequality in the UK using the same data as in Arellano and Bon-

homme (2017).3 Among our major findings based on our method, after adjusting for sample selection, (i)

there is significant negative selection among males; (ii) our results provide significant correction to females,

with the magnitude of corrections two to four times as in Arellano and Bonhomme (2017); (iii) the gender

wage gap has remained large and the wage gap reduction is not significant, compared with the observed

wage distribution without correcting for selection or the results based on Arellano and Bonhomme (2017).

On the other hand, in a survey article, Blau and Khan (2017) noted that the long-term trend has been a sub-

stantial reduction in the gender wage gap in advanced nations, whereas Mulligan and Rubinstein (2008)

did not find much of a reduction in gender wage gap after selection correction. Regarding the selection

pattern, Maasoumi and Wang (2019) noted that it could vary in magnitude and sign over time. Ermisch

and Wright (1994) argued that negative selection into employment is very plausible when there is relatively

high positive correlation between the wage offer and reservation wage of a potential worker. Negative

selection has also been observed by Dolton and Makepeace (1987), Steinberg (1989), Wright and Ermisch

(1991), Mulligan and Rubinstein (2008), and Mocan and Unel (2017).

Sample selection model with censored selection was classified by Amemiya (1985) as the type 3 Tobit

model. This model has also been studied by Amemiya (1978, 1979), Vella (1993) and Wooldridge (1998) in a

parametric context, whereas Lee (1994), Honoré et al. (1997), Chen (1997), Christofides et al. (2003) and Lee

and Vella (2006) considered semiparametric estimation. More recently, Fernández-Val et al. (2021) studied

nonseparable sample selection models with censored selection rules.

2We thank one referee for pointing this out.
3The data set is publicly available through https://www.econometricsociety.org/content/

supplement-quantile-selection-models-application-understanding-changes-wage-inequality-0.
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Maasoumi and Wang (2019) applied Arellano and Bonhomme’s (2017) method to study the evolution

wage inequality in the U.S. for the period 1976-2013 using the data from the Current Population Survey

(CPS). Aside from Arellano and Bonhomme (2017), Buchinsky (1998, 2001) also considered quantile regres-

sion subject to sample selection, but with an additive structure. In general, however, the additive structure

is very restrictive and Buchinsky’s quantile regression model does not allow for general heterogeneity. Hu-

ber and Melly (2015), on the other hand, focused on testing for the additive structure in a quantile selection

model.
The rest of the paper is organized as follows. Section 2 presents the quantile selection model subject to

censored quantile selection, discusses model identification and outlines our estimation procedure.4 Section

3 presents the large sample properties of our estimator. Simulation results are contained in Section 4. We

apply our method to the FES data in Section 5. We then conclude in Section 6. The Appendix contains

proofs of the main theorems and the tables for simulation.

2 Model, Identification and Estimation

2.1 Model

In this paper we consider quantile selection models with nonparametric and semiparametric specification

for the outcome equation and the selection equation. In both cases the selection bias is modelled through a

parametric copula function.

The quantile selection model with nonparametric specification for the outcome and selection equations

take the following form:

Y∗1 =q1(U, X) (2.1)

Y2 =max {Y∗2 , 0} = max {q2(V, X), 0} (2.2)

D =1 {Y∗2 > 0} (2.3)

where Y∗1 and Y∗2 are the latent outcome variables (e.g, market wage and hours worked), D is the participa-

tion indicator (employment), X contains observed characteristics, U and V are unobserved characteristics

with standard uniform marginals. We observe (Y1, Y2, D, X) where Y1 = DY∗1 , so that the potential outcome

Y∗1 is observed when D = 1, or equivalently Y∗2 > 0; see Heckman (1974, 1979), Heckman and Sedlacek

(1990), and Blundell et al. (2003), for more discussions. Note that the participation is modelled through

a censored regression and consequently we do not need to impose the usual exclusion restriction, unlike

Arellano and Bonhomme (2017). However, we assume a parametric specification on the copula function

for the joint distribution of (U, V).

For the case with semiparametric specification for the outcome equation and the selection equations, we

consider the following model:

4Our estimator has been implemented by an R package available through https://drive.google.com/drive/folders/

1G6SSQqVDYYakUn11JGX9fVBkZ8Sv3hoc?usp=sharing.
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Y∗1 =X′β(U) (2.4)

Y2 =max {Y∗2 , 0} = max
{

X′γ(V), 0
}

(2.5)

D =1 {Y∗2 > 0} (2.6)

where both the outcome and selection equations follow a linear-in-parameter structure for the quantile

regression functions.

2.2 Identification

In this subsection, we study identification of the models stated above. We first consider nonparametric

identification of the outcome equation. We do not rely on identification at infinity or the exclusion restric-

tion. We make the following assumption:

Assumption 1: {Y1i, Y2i, Di, Xi, Ui, Vi}n
i=1 is a random sample generated from (2.1− 2.3).

A1 (Unobservables) The bivariate distribution of (U, V) given X = x is absolutely continuous with

respect to the Lebesgue measure, with standard uniform marginals and rectangular support. We denote its

cumulative distribution function (c.d.f.) as C∗x(u, v, ρ0) for some ρ0 with finite dimension.

A2 (Continuous outcomes) The conditional distributions FY∗1 |X(y1|x), FY∗2 |X(y2|x) and their inverses are

strictly increasing for any given x. In addition, C∗x(u, v, ρ0) is strictly increasing in u and v.

A3 (Propensity score) p(X) ≡ Pr(D = 1|X) > 0 with probability 1.

Let τx denote FY∗2 |X(0|x) for x ∈ X , where X denotes the support of X.

Proposition 1: Let Assumption 1 hold. Also, suppose that (i) there exists some x0 ∈ X such that

τx0 = infx∈X τx; (ii) for τ, τ̃ ∈ (0, 1) and some ρ̃, C∗(τ, τ0, ρ0) = C∗(τ̃, τ0, ρ̃) holds for τ0 ≥ τ0x0 if and only if

τ = τ̃ and ρ0 = ρ̃, then q1(x, τ) is identified for τ ∈ (0, 1).

Proof: Note that for any τ0 ∈ (0, 1) and x ∈ X , if q2(τ0, x) > 0, then q2(τ0, x) can be identified since for

such τ0 the τ0th conditional quantiles of Y2 and Y∗2 given X = x coincide, and in particular, we have

P(Y1 < t1, Y2 < q2(τ0, x)|X = x) = C∗x(FY1|X(t1|x), τ0, ρ0)

for any t1 ∈ R. Define

I(F, ρ) =
∫ ∫ 1

τx

∫ +∞

−∞

[
C∗x(FY1|X(t1|x), τ0, ρ0)− C∗x(F(t1|x), τ0, ρ)

]2
1 {q2(τ0, x) > 0} dt1dτ0dFX(x)

where FX(·) denotes the distribution of X.

Note that I(FY1|X (·|·) , ρ0) = 0. Suppose I(F̃, ρ̃) = 0 for some
(

F̃, ρ̃
)
. Then, we have

C∗x(FY1|X(t1|x), τ0, ρ0) = C∗x(F̃Y1|X(t1|x), τ0, ρ̃)

for all t1 ∈ R, and x ∈ X , if q2(τ0, x) > 0. In particular, for x = x0, we have

C∗x(FY1|X(t1|x0), τ0, ρ0) = C∗x(F̃Y1|X(t1|x0), τ0, ρ̃)
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for all t1 ∈ R and τ0 > τ0x0 . Then Condition (ii) implies that ρ̃ = ρ0 and F̃Y1|X(t1|x0) = FY1|X (t1|x0). As a

result, once ρ0 is identified, we have, for any x ∈ X ,

C∗x(FY1|X(t1|x), τ0, ρ0) = C∗x(F̃Y1|X(t1|x), τ0, ρ0)

for all t1 ∈ R and τ0 > τ0x. Then, from Assumption A2, we can deduce

FY1|X(t1|x) = F̃Y1|X(t1|x)

for all t1 ∈ R, which implies that q1(τ, x) = q̃1(τ, x), for all τ ∈ (0, 1) and x ∈ X where q̃1(τ, x) =

F̃−1
Y1|X

(τ|x).

Remark 1: Proposition 1 provides an identification result with nonparametrically specified outcome

and selection equations, but with a parametric specification for the copula function. On the other hand,

by imposing an exclusion restriction, Arellano and Bonhomme (2017) considered the identification with

nonparametric specification for the outcome and selection equations as well as the copula function, by

relying on identification at infinity or analytic extrapolation.

Remark 2: Our identification strategy, in spirit, follows the common identification strategy used for

nonlinear regression models. Essentially we view C∗x(τ, τ0, ρ) as a function of τ0 indexed by (τ, ρ). Let

θ̃ = (τ̃, ρ̃) and θ∗ = (τ∗, ρ∗). Also, let C∗x(τ̃, τ0, ρ̃) = C̄x(θ̃, τ0) and C∗x(τ∗, τ0, ρ∗) = C̄x(θ∗, τ0). Then the

Condition (ii) in Proposition 1 basically states that C̄x(θ∗, τ0) = C̄x(θ̃, τ0) holds for τ0 ≥ τ0x if and only if

θ∗ = θ̃.
Remark 3: Note that for the quantile selection model with a binary selection equation, we can only re-

cover FY2|X(0|x) and C∗x(FY1|X(t1|x), FY2|X(0|x), ρ0), for t1 ∈ R and x ∈ X . Without an exclusion restriction,

lack of variation of C∗x(FY1|X(t1|x), FY2|X(0|x), ρ0) prevents the identification of FY1|X(t1|x) and ρ0; in con-

trast, for the quantile selection model with a censored selection, we are able to recover C∗x(FY1|X(t1|x), τ0, ρ0)

for t1 ∈ R and τ0 ≥ τ0x, and consequently the variation of C∗x(FY1|X(t1|x), τ0, ρ0) in τ0 and the parametric

structure of the copula function provides important information for the identification of FY1|X(t1|x) and ρ0,

for t1 ∈ R and x ∈ X , without resorting to the exclusion restriction.

We now consider the semiparametric case. We make some slight adjustment to Assumption 1.

Assumption 1’: {Y1i, Y2i, Di, Xi, Ui, Vi}n
i=1 is a random sample generated from (2.4− 2.6).

A1 (Unobservables) The bivariate distribution of (U, V) given X = x is absolutely continuous with

respect to the Lebesgue measure, with standard uniform marginals and rectangular support. We denote its

cumulative distribution function (c.d.f.) as C∗(u, v, ρ0).

A2 (Continuous outcomes) The conditional distributions FY∗1 |X(y1|x), FY∗2 |X(y2|x) and their inverses are

strictly increasing for any given x. In addition, C∗(u, v, ρ0) is strictly increasing in u and v.

A3 (Propensity score) p(X) ≡ Pr(D = 1|X) > 0 with probability 1.

Note that compared with Assumption 1, we assume that the copula function is independent of the

regressors.5 Define C (τ, τ0, ρ0) =
C∗(τ,1,ρ0)−C∗(τ,τ0,ρ0)

1−τ0
.

5As in Arellano and Bonhomme (2017), we can relax this assumption by allowing the copula function to depend on the regressors
with a parametric structure.
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Proposition 2: Let Assumption 1’ hold. In addition, suppose that (i) γ(τ0) is identified for any τ0 ∈
(τ01, τ02) with E [1 {X′γ (τ01) > 0}XX′] being nonsingular; (ii) C(τ, τ0, ρ0) = C(τ̄, τ0, ρ̄) holds for τ0 ∈
(τ01, τ02) if and only if (τ̄, ρ̄) = (τ, ρ0); then β (τ) is identified.

Proof: Define for τ ∈ (0, 1),

I(b, τ, ρ) =
∫ τ02

τ01

E
[
1
{

X′γ (τ0) > 0
} {

E
[
D1
{

Y2 > X′γ (τ0)
}

1
{

Y1 < X′b
}
|X
]
− (1− τ0)C(τ, τ0, ρ)

}]2 dτ0

It is straightforward to show that I (β (τ) , τ, ρ0) = 0. Now suppose I (b, τ, ρ) = 0 for some (b, ρ), then we

can show

(1− τ0)
2
∫ τ02

τ01

E
{

1
{

X′γ (τ0) > 0
} [

C(FY∗1 |X(X′b|X), τ0, ρ0)− C(τ, τ0, ρ)
]2
}

dτ0 = 0

and in particular, for any x such that x′γ (τ0) > 0, we have

C(FY∗1 |X(X′b|x), τ0, ρ0) = C(τ, τ0, ρ)

for τ0 ∈ [τ01, τ02]. Then by Assumption (ii) we can deduce that ρ = ρ0 and x′b = x′β (τ), which, in turn,

implies that b = β (τ) if E [1 {X′γ (τ0) > 0}XX′] is nonsingular.

Similar to Proposition 1, here we adopt a nonlinear least squares type identification strategy.

Remark 4: Similar to the discussion in Remark 2, write C(τ, τ0, ρ) as g(τ0, θ), which is a function of τ0

with a parameter θ, where θ = (τ, ρ), then Condition (ii) in Proposition 2 states that g(τ0, θ) = g(τ0, θ∗)

for τ0 ∈ (τ01, τ02), if and only if θ = θ∗, where θ∗ = (τ, ρ). This is a common identification strategy for

nonlinear regression analysis. See Section 2.2.2 in Newey and McFadden (1994) for more details.

Remark 5: The main arguments of Proposition 2 are essentially based on the following conditional
moments:

E
[
D · 1

{
Y2 > X′γ (τ0)

}
1
{

Y1 < X′β (τ)
} ∣∣X, X′γ (τ0) > 0

]
− (1− τ0) · C(τ, τ0, ρ0) = 0

for τ ∈ (0, 1) and τ0 ∈ (τ01, τ02). On the other hand, it is well known conditional moment restrictions are

equivalent to infinite number of unconditional moment restrictions. In practice, for estimation purpose we

could adopt increasing number of moment conditions as the sample size increases to take full advantage of

the conditional moments. However, for ease of empirical implementation, in the next subsection we con-

sider semiparametric estimation based on a finite number of unconditional moments, similar to Arellano

and Bonhomme (2017, 2017S).

2.3 Estimation

We now consider the estimation of the semiparametric model (2.4− 2.6). To construct appropriate moment

conditions, define

D2 (τ0) = 1
{

Y2 > X′γ (τ0)
}
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for any τ0 ∈ (0, 1). Note that

D2 (τ0) = 1
{

Y∗2 > X′γ (τ0)
}
= 1 {V > τ0}

if X′γ (τ0) > 0. Let [τl , τu] be a range of τ0 for which we can obtain reasonably precise estimates for γ (τ0).

Then, for those observations with X′γ (τ0) > 0, the subsample selection indicator D2 no longer depends on

regressors, unlike D. Appropriate moment conditions are constructed based on this observation. Note that

for the observation with X′γ (τ0) > 0, for any pair of τ and τ0, we have

D2 (τ0) 1
{

Y1 < X
′
β(τ)

}
= 1

{
Y∗1 < X

′
β(τ), Y∗2 > X

′
γ(τ0)

}
= 1

{
X′β (U) < X

′
β(τ), X′γ (V) > X

′
γ(τ0)

}
= 1 {U < τ, V > τ0} ,

which, in turn, yields the following conditional moment conditions,

E
[
D2 (τ0) 1

{
X′γ(τ0) > 0

} (
1
{

Y1 < X′β(τ)
}
− C (τ, τ0, ρ0)

)
|X
]
= 0. (2.7)

In particular, given γ (τ0), we work with the following unconditional moment conditions for the estimation

of β (τ) and ρ0:

Eg1 (ξi, b, γ(τ0), ρ, τ, τ0) = 0, (2.8)

Eg2 (ξi, b, γ(τ0), ρ, τ, τ0) = 0, (2.9)

where
g1 (ξi, b, γ, ρ, τ, τ0) = 1

{
X′i γ > 0

}
1
{

Y2i > X′i γ
} (

1
{

Y1i < X′i b
}
− C (τ, τ0, ρ)

)
Xi,

and
g2 (ξi, b, γ, ρ, τ, τ0) = 1

{
X′i γ > 0

}
1
{

Y2i > X′i γ
} (

1
{

Y1i < X′i b
}
− C (τ, τ0, ρ)

)
ϕ (Xi) ,

with ξi = (Xi, Y1i, Y2i) and ϕ is some instrumental function of X. Also note that (2.8) can be viewed as the

first order condition for the following minimization problem:

min
b∈B

Eq1 (ξi, b, γ (τ0) , ρ, τ, τ0) ,

where

q1 (ξi, b, γ, ρ, τ, τ0) = 1
{

X′i γ > 0
}

1
{

Y2i > X′i γ
}

×
[
C (τ, τ0, ρ)

(
Y1i − X′i b

)+
+ (1− C (τ, τ0, ρ))

(
Y1i − X′i b

)−] .

Based on the above observation, we are now ready to propose a two-step estimator for ρ0. We replace γ (τ0)

for τ0 ∈ (0, 1), by some existing estimator γ̂ (τ0) such as Powell (1986) and Chen (2018). Let J0 and J1 be

two sets of quantile indices such that τ0 ∈ J0 and τ ∈ J1 then τ0 ∈ [τl , τu] and τ ∈ [τ∗l , τ∗u ].

8



Step 1: For a given ρ, τ0 ∈ J0 and τ ∈ J1, define β̂ (τ, τ0, ρ) as a solution to the minimization problem,

min
b∈B

Q1n (b, γ̂(τ0), ρ, δn, τ, τ0)

where

Q1n (b, γ, ρ, δ, τ, τ0) =
1
n

n

∑
i=1

q1 (ξi, b, γ, ρ, δ, τ, τ0)

and here, with a slight abuse of notation, we define

q1 (ξi, b, γ, ρ, δ, τ, τ0) = 1
{

X′i γ > δ
}

1
{

Y2i > X′i γ
}

×
[
C (τ, τ0, ρ)

(
Y1i − X′i b

)+
+ (1− C (τ, τ0, ρ))

(
Y1i − X′i b

)−]
Here δn is a sequence of positive numbers converging to 0. Such a sequence is adopted to avoid possible

boundary issues. For any τ ∈ J1, once β̂ (τ, τ0, ρ) is available for τ0 ∈ J0, we define

β̂ (τ, ρ) =
1

#J0
∑

τ0∈J0

β̂ (τ, τ0, ρ) .

Step 2: Define

G2n (b, γ, ρ, δ, τ, τ0) =
1
n

n

∑
i=1

g2 (ξi, b, γ, ρ, δ, τ, τ0)

where

g2 (ξi, b, γ, ρ, δ, τ, τ0) = 1
{

X′i γ > δ
}

1
{

Y2i > X′i γ
} (

1
{

Y1i < X′i b
}
− C (τ, τ0, ρ)

)
ϕ (Xi)

Now, given β̂ (τ, ρ) for τ ∈ J1, we estimate ρ0 by ρ̂, which solves

min
ρ∈$

G2n (ρ)

where
G2n (ρ) = ∑

τ0∈J0,τ∈J1

∥∥G2n
(

β̂ (τ, ρ) , γ̂ (τ0) , ρ, δn, τ, τ0
)∥∥

and ‖·‖ denotes the Euclidean norm.

Finally, given our estimator for ρ0, ρ̂, for any τ ∈ (0, 1), we can estimate β (τ) by β̂ (τ, ρ̂), where

β̂ (τ, ρ̂) =
1

#J0
∑

τ0∈J0

β̂ (τ, τ0, ρ̂)

with β̂ (τ, τ0, ρ̂) being defined as in Step 1.

Remark 6: Note that in estimating β (τ, τ0, ρ) we would use the subsample 1 {X′γ (τ0) > 0}when γ (τ0)

is known. When we replace γ (τ0) by γ̂ (τ0), we make some slight adjustment using 1 {X′γ̂ (τ0) > δn} to

guarantee that with large probability 1 {X′γ (τ0) > 0} holds for the selected subsample.
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3 Large Sample Properties

This section provides the large sample properties of our estimator. We make following assumptions.

Assumption A.1: {Xi, Y1i, Y2i, Ui, Vi}n
i=1 is a random sample generated from equations (2.4− 2.6) .

Assumption A.2: (U, V) is jointly statistically independent of X, and the bivariate distribution of (U, V),

C∗ (u, v, ρ0), is absolutely continuous with respect to the Lebesgue measure with standard uniform marginals

and rectangular support. In addition, C∗ (u, v, ρ0) is strictly increasing in u and v.

Assumption A.3: The conditional density of
(
Y∗1 , Y∗2

)
given X = x, f (y1, y2|x) is continuously differentiable

in (y1, y2) with positive density on R2.

Assumption A.4: β(τ), γ(τ0) and ρ0 are interior point of a compact set B × Γ × $, respectively, for any

τ0 ∈ [τl , τu] and τ ∈ [τ∗l , τ∗u ].

Assumption A.5: γ̂ (τ0) satisfies

max
τ0∈[τl ,τu ]

|γ̂ (τ0)− γ0 (τ0)| = O
(

n−1/2 log log n
)

almost surely and uniformly over τ0 ∈ [τl , τu] and

√
n (γ̂ (τ0)− γ0 (τ0)) =

1√
n

n

∑
i=1

φγi (τ0) + op (1)

with Eφγi (τ0) = 0.

Assumption A.6: δn ∝ n−t for some t < 1/2.

Assumption A.7: the matrices E
[
1
{

X
′
γ(τ0) > 0

}
1 {V > τ0} f1(X

′
β(τ)|X)XX

′
]

are positive definite for

all τ ∈ [τ∗l , τ∗u ], τ0 ∈ J0, where f1(y1|x) denotes the conditional density function of Y∗1 at y1 given X = x; In

addition,

lim
ε→0

sup
τ0∈[τl ,τu ]

Pr
(∣∣X′γ (τ0)

∣∣ < ε
)
= 0

Let
Ḡ2 (ρ) = ∑

τ0∈J0,τ∈J1

‖E [G2n (β (τ, ρ) , γ (τ0) , ρ, 0, τ0, τ)]‖

Assumption A.8: ρ0 is the unique minimizer of Ḡ2 (ρ).

Define

∂G1β(τ, τ0, ρ) =
∂

∂b
Ḡ1 (β (τ, τ0, ρ) , γ (τ0) , ρ, τ, τ0)

∂G1γ(τ, τ0, ρ) =
∂

∂γ
Ḡ1 (β (τ) , γ (τ0) , ρ, τ, τ0)

∂G1ρ(τ, τ0, ρ) =
∂

∂ρ
Ḡ1 (β (τ) , γ (τ0) , ρ, τ, τ0)
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and

∂G2β(τ, τ0, ρ) =
∂

∂b
Ḡ2 (β (τ, τ0, ρ) , γ (τ0) , ρ, τ, τ0)

∂G2γ(τ, τ0, ρ) =
∂

∂γ
Ḡ2 (β (τ) , γ (τ0) , ρ, τ, τ0)

∂G2ρ(τ, τ0, ρ) =
∂

∂ρ
Ḡ2 (β (τ) , γ (τ0) , ρ, τ, τ0)

where

Ḡ1 (b, γ(τ0), ρ, τ, τ0) = E
[
1
{

X′i γ (τ0) > 0
}

1
{

Y∗2i > X′i γ(τ0)
} (

1
{

Y1i < X′i b
}
− C (τ, τ0, ρ)

)
Xi
]

and

Ḡ2 (b, γ(τ0), ρ, τ, τ0) = E
[
1
{

X′i γ (τ0) > 0
}

1
{

Y∗2i > X′i γ(τ0)
} (

1
{

Y1i < X′i b
}
− C (τ, τ0, ρ)

)
ϕ (Xi)

]
In addition, let

L2(τ0, τ) = ∂G2β(τ, τ0, ρ0)
∂

∂ρ
β (τ, ρ0) + ∂G2ρ(τ, τ0, ρ0)

Assumption A.9: (i) ∂G1β(τ, τ0, ρ) is nonsingular for all τ ∈ [τ∗l , τ∗u ], τ0 ∈ [τl , τu], ρ ∈ $ and (ii) the matrix

(L2(τ0, τ))τ0∈J0,τ∈J1
is of full rank.

Assumption A.1 describes the data generating mechanism. Assumption A.2 describes the copula func-

tion and requires the unobserved error terms are statistically independent of all the covariates X as in

Arellano and Bonhomme (2017). Assumption A.3 provides some smoothness and boundedness conditions

on the joint conditional distribution of Y∗1 and Y∗2 given the exogenous variables. The compactness condi-

tion in Assumption A.4 is standard for extremum estimators. Assumption A.5 describes the large sample

properties of the first step estimator γ̂ (τ0), which are satisfied by Chen’s (2018) sequential quantile regres-

sion estimator and Powell’s (1986) estimator. Assumption A.6 states that δn can go to zero at any rate slower

than
√

n. Assumption A.7 contains the full rank condition for quantile regression by taking into sample se-

lection. Assumption A.8 is the global identification condition. Similar to typical moment-based estimators,

here we assume that finite number of moments are sufficient for parameter identification. As discussed

above, Proposition 2 essentially provides conditions for global identification based on infinite number of

moment conditions. While we could adopt increasing number of moment conditions as the sample size

increases, for practical empirical implementation, we consider semiparametric estimation based on a finite

number of moment equations here. The non-singularity of ∂G1β(τ, τ0, ρ) in Assumption A.9 is to ensures

that β̂ (τ, ρ) satisfies an asymptotic linear representation, and the full rankness of (L2(τ0, τ))τ0∈J0,τ∈J1
is the

local identification condition for ρ0.

The following theorem establishes the consistency and asymptotic normality of our estimator for copula

coefficient ρ0 and quantile coefficients β(τ) for τ ∈ [τ∗l , τ∗u ].

Before presenting the theorem, with a slight abuse of notation, we first define

G1n (b, γ, ρ, δ, τ, τ0) =
1
n

n

∑
i=1

g1 (ξi, b, γ, ρ, δ, τ, τ0)
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with
g1 (ξi, b, γ, ρ, δ, τ, τ0) = 1

{
X′i γ > δ

}
1
{

Y2i > X′i γ
} (

1
{

Y1i < X′i b
}
− C (τ, τ0, ρ)

)
Xi

and further define

φβi (τ) = φ̃βi (τ) +
∂β (τ, ρ0)

∂ρ
φρi

and

φρi =

 ∑
τ0∈J0,τ∈J1

L′2(τ0, τ)L2(τ0, τ)

−1

∑
τ0∈J0,τ∈J1

L′2(τ0, τ)L̃2i (τ0, τ)

where L̃2i (τ0, τ) = g2 (ξi, β (τ, ρ0) , γ (τ0) , ρ0, 0, τ, τ0) + ∂G2β (τ, τ0, ρ0) φ̃βi(τ) + ∂G2γ (τ, τ0, ρ0) φγi (τ0), and

φ̃βi(τ) = (1
/

#J0) ·∑τ0∈J0
∂G−1

1β (τ, τ0, ρ0)g1
(
ξi, β(τ, τ0, ρ0), γ(τ0), ρ0, 0, τ, τ0

)
+ ∂G−1

1β (τ, τ0, ρ0) · ∂G1γ(τ, τ0, ρ0)φγi(τ0).

Theorem 1 If Assumptions A.1-A.9 hold, then (i) ρ̂ is consistent for ρ0 and for any τ ∈
[
τ∗l , τ∗u

]
, and β̂ (τ, ρ̂) is

consistent for β (τ); (ii) furthermore, ρ̂ and β̂ (τ, ρ̂) have the asymptotic linear representation:

√
n (ρ̂− ρ0) =

1√
n

n

∑
i=1

φρi + op (1)

and
√

n
(

β̂ (τ, ρ̂)− β (τ)
)
=

1√
n

n

∑
i=1

φβi (τ) + op (1)

uniformly in τ ∈
[
τ∗l , τ∗u

]
. Thus, ρ̂ and β̂ (τ, ρ̂) are asymptotic normal with

√
n (ρ̂− ρ0)

d−→ N
(

0, E
[
φρiφ

′
ρi

])
,

and
√

n
(

β̂ (τ, ρ̂)− β (τ)
) d−→ N

(
0, E

[
φβi (τ) φ′βi (τ)

])
.

In order to conduct statistical inference, it is important to provide consistent estimates for asymptotic

covariance matrices. We can follow Arellano and Bonhomme (2017) to construct analytical estimates. Alter-

natively, resampling methods are also useful since direct estimation of the limiting covariance matrix can

be difficult when the sample size is only moderately large, as it involves the estimation of the conditional

density function, typical in a context of quantile regression. In fact, in our case, there are two density terms

involved. Similar to Chen et al. (2003), Chernozhukov et al. (2015) and Chen (2018), we consider the mul-

tiplier bootstrap. Specifically, let {ηi}n
1 be i.i.d. draws of positive random variables with Eη =Var(η) = 1,

independent of the data. First, we use the multiplier bootstrap estimator γ̂∗ (τ0) for γ (τ0) in Chen (2018),

then the following assumption is satisfied.

Assumption A.5’: γ̂∗ (τ0) satisfies

max
τ0∈[τl ,τu ]

|γ̂∗ (τ0)− γ0 (τ0)| = O
(

n−1/2 log log n
)
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almost surely and uniformly over τ0 ∈ [τl , τu]

√
n (γ̂∗ (τ0)− γ0 (τ0)) =

1√
n

n

∑
i=1

ηiφγi (τ0) + op (1)

jointly in space P× Pη .

Now given the first step estimator γ̂∗ (τ0), for a fixed ρ, and τ0 ∈ J0 and τ ∈ J1 we define β̂∗ (τ, τ0, ρ)

as a solution to
min
b∈B

Q∗1n (b, γ̂∗(τ0), ρ, δn, τ, τ0)

where

Q∗1n (b, γ, ρ, δ, τ, τ0) =
1
n

n

∑
i=1

ηiq1 (ξi, b, γ, ρ, δ, τ, τ0)

For any τ ∈ J1, once β̂∗ (τ, τ0, ρ) is available for τ0 ∈ J0, we define

β̂∗ (τ, ρ) =
1

#J0
∑

τ0∈J0

β̂∗ (τ, τ0, ρ)

Next, define

G∗2n (b, γ, ρ, δ, τ, τ0) =
1
n

n

∑
i=1

ηig2 (ξi, b, γ, ρ, δ, τ, τ0)

Now, given β̂∗ (τ, ρ) for τ ∈ J1, we define

ρ̂∗ = min
ρ∈$

G∗2n (ρ)

where
G∗2n (ρ) = ∑

τ0∈J0,τ∈J1

∥∥G∗2n
(

β̂∗ (τ, ρ) , γ̂∗ (τ0) , ρ, δn, τ, τ0
)∥∥

Finally, given ρ̂∗, for any τ, define

β̂∗ (τ, ρ̂∗) =
1

#J0
∑

τ0∈J0

β̂∗ (τ, τ0, ρ̂∗)

We will show that the asymptotic distribution of
√

n
(

β̂ (τ, ρ̂)− β (τ)
)

can be approximated by the limit-

ing distribution of
√

n
(

β̂∗ (τ, ρ̂∗)− β̂ (τ, ρ̂)
)

conditional on the data, which in practice can be implemented

through numerical simulation. We make the following additional assumption.

Assumption A.10: The weights {ηi}n
1 are i.i.d. draws from a positive random variable η with Eη =Var(η) =

1 and it possesses 2 + c0 moment for some c0 > 0 that lives in a probability space (Ωη , Fη , Pη), independent

of the data
{

Xi, Y∗1i, Y∗2i
}

.

Theorem 2 If Assumptions A.1-A.4, A.5’ and A.6-A.10 hold, then conditional on the data,

√
n
(

β̂∗ (τ, ρ̂∗)− β̂ (τ, ρ̂)
) d−→ N(0, E

[
φβi(τ)φ

′
βi(τ)

]
).
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4 A Simulation Study

In this section we report the results of some Monte Carlo experiments to demonstrate the finite sample

performance of our estimator. The first four designs of our simulation investigate the performance of our

estimation approach when there exists some excluded covariate. We adopt the following data generating

processes with sample size of n = 250 and n = 500, each replicated 400 times:

Y∗1 = −1 + X1 + X2 + σ(X) ·Φ−1(U),

Y∗2 = 1 + Z1 + Z2 + Z3 + Z4 + Φ−1(V),

Y2 = max {Y∗2 , 0} , D = 1 {Y∗2 > 0} , Y1 = D ·Y∗1 ,

where σ(X) = 1 for the homoscedastic case and σ(X) = 1 + 0.4 · X1 for the heteroscedastic case, X1, X2,

Z3, and Z4 are independent standard normal N(0, 1) with Z1 = X1 and Z2 = X2, (U, V) are independent

of all regressors (X and Z) and distributed according to either Gaussian copula C∗G(·, ·, 0.7) or Frank copula

C∗F(·, ·, 5.628),6 and Φ−1(·) is the quantile function of the standard normal distribution. Consequently, there

are four types of Data Generating Processes (DGPs) specified by the combinations of σ(X) and copula (of

(U, V)) in our experiments. The censoring percentages are about 33% in all of four DGPs. In the last four

experiments, we look into the performance of our estimation method when there is no excluded covariates.

Their DGPs are specified as

Y∗1 = −1 + X1 + X2 + σ(X) ·Φ−1(U),

Y∗2 = 1 + X1 + X2 + Φ−1(V),

Y2 = max {Y∗2 , 0} , D = 1 {Y∗2 > 0} , Y1 = D ·Y∗1 ,

where σ(X) = 1 for the homoscedastic case and σ(X) = 1 + 0.4 · X1 for the heteroscedastic case, X1 and X2

are independent standard normal N(0, 1), and (U, V) are from either Gaussian copula C∗G(·, ·, 0.7) or Frank

copula C∗F(·, ·, 5.628).

Before discussing the performance of our estimator, we first describe the implementation details of our

estimation procedure in the simulation study. The set J0 of quantile indices is given by {τ̃0j}L0
j=1 where

τ̃01 = 0.9, τ̃0L0 = 0.3, and τ̃0j − τ̃0j+1 = 0.05 for j = 1, . . . , L0− 1; and the set J1 is specified as {τ̃j}L
j=1 where

τ̃1 = 0.9, τ̃L = 0.1, and τ̃j − τ̃j+1 = 0.05 for j = 1, . . . , L− 1. We follow Chen’s (2018) three-step estimation

procedure to obtain the estimates of γ(τ0) for all τ0 ∈ J0. Similar to Chernozhukov and Hong (2002), we

choose the subsample selector parameter δn to be the 1% quantile of those positive Z′i γ̂(τ0) or X′i γ̂ (τ0) in

both steps of our estimation.7 Moreover, in the second step, we choose ‖ · ‖ in G2n(·) to be Euclidean norm

and ϕ(Z) = (1, Z1, Z2, Z3, Z4) in the first four experiments and ϕ(X) = (1, X1, X2, X2
1 , X2

2 , X1 · X2) in the

last four designs. We then estimate the quantile coefficients β(τ) for τ ∈ J1 and copula parameter ρ by

our two-step estimation procedure in those eight DGP scenarios with sample size of n = 250 and n = 500.

6Both the Gaussian copula of C∗G(·, ·, 0.7) and Frank copula of C∗F(·, ·, 5.628) have a Kendall’s tau coefficient of about 0.494.
7We follow the same strategy in the empirical application. Also note that the semiparametric estimation procedure in Arellano and

Bonhomme (2017) does not involve choosing a tuning parameter.
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In particular, after obtaining an estimate of the copula parameter ρ, i.e. ρ̂, the quantile coefficients can be

recovered by β̂(τ, ρ̂) for all τ ∈ J1.

We now report the performance of our estimator ρ̂ and β̂(τ, ρ̂) for τ = 0.9, 0.75, 0.50, 0.25, and 0.10 to

demonstrate how well our estimation procedure can recover the quantile coefficients at different quantile

levels. In particular, we report the bias (Bias), the standard deviation (SD), and the root mean square

error (RMSE) for our estimator. With excluded covariates, Tables 2-3 are for the homoscedastic case, and

Tables 4-5 focus on the heteroscedastic case. Tables 6-7 and 8-9 report the results for the homoscedastic and

heteroscedastic cases, respectively, without excluded covariates. All the tables are placed in Appendix B.

Table 2 provides the simulation results for the homoscedastic case (i.e., σ(X) = 1) with Gaussian copula

which has a correlation coefficient of ρ0 = 0.7. It shows that our estimator of quantile coefficients performs

reasonably well in the entire quantile range even under the moderate sample size of n = 250. Moreover,

when the sample size increases to 500, the root mean square error (RMSE) of our estimator for both quantile

coefficients and correlation parameter (of Gaussian copula) decreases significantly; in addition, there are

effectively little or no biases across the board.

We report the simulation results for the homoscedastic case with the Frank copula having a parameter

of ρ0 = 5.628 in Table 3.8 Similar to Table 2, it shows that, with Frank copula, (i) our estimator for quantile

coefficients is reasonably satisfactory for all quantile levels, and (ii) our estimator becomes closer to its true

value as sample size increases. In addition, comparing with the results of Gaussian copula in Table 2, the

estimator of quantile coefficients with Frank copula performs slightly better (in terms of RMSE) overall for

the upper quantiles such as τ = 0.75 and 0.90, but slightly worse for the lower quantiles such as τ = 0.10

and 0.25, with overall very good performance. For the estimation of the copula parameter, one might

get the impression that both the biases and standard errors are quite sizable, especially when n = 250.

However, this is quite misleading and mainly due to the peculiar nature of the Frank copula. To present a

better picture, we convert the copula parameter to the Kendall’s tau, which provides a much more intuitive

description for the copula structure since Kendall’s tau is a more concrete and intuitive summary of the

dependence measure of any particular copula. Then, it turns out our estimator for Kendall’s tau performs

very well, with very small biases and standard errors, even when n = 250.

Tables 4 and 5 report the results for the heteroscedastic cases (i.e., σ(X) = 1 + 0.4 · X1) with Gaussian

copula C∗G(·, ·, 0.7) and Frank copula C∗F(·, ·, 5.628), respectively. Heteroscedastic model captures the nature

of quantile regression where both slope and intercept coefficients are varying over quantiles. In general we

observe a similar pattern of performances of our estimator to the homoscedastic designs; our estimator for

both the quantile coefficients and copula parameter largely performs very well.

Tables 6 to 9 report the results for the cases with no exclusion restriction, with both homoscedastic and

heteroscedastic designs and the Gaussian copula C∗G(·, ·, 0.7) and Frank copula C∗F(·, ·, 5.628). Compared

with the first four designs that impose the exclusion restriction, our estimator continue to perform very

well, with somewhat larger RMSEs. This is quite encouraging and suggests that our method is robust to

absence of excluded covariates in the selection equation. Such a feature makes our approach empirically

appealing, since excluded covariates are typically difficult to justify and find in many real data sets.

8Note that the parameter ρ of Gaussian copula is in [−1, 1], but the one of Frank copula is in R/{0}. We report the statistics for
both ρ and Kendall’s τ, which is in [−1, 1], in the Frank copula case.
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5 An Application to the UK Labor Market

In this section, we apply our estimation procedure to study the wage inequality within and between gen-

ders in the UK labor market. The wage inequality within gender is demonstrated by the difference of

potential wages at different quantiles, while the wage inequality between genders is measured by the dif-

ferences of male and female potential wages at the same quantile levels. It is well known in labor economics

that the estimation of wage distribution, and hence gender wage gap, is biased if the nonrandom selection

(into work) issue is not addressed. We use our quantile censored selection model to correct for the (nonran-

dom) sample selection bias by using the censored data of working hours which are available in most, if not

for all, labor economic data sets (see, e.g., Table 2.25 of Killingsworth and Heckman, 1986 for summary of

typical data sets in the literature). Our method recovers the given quantiles of potential wage distributions

for both males and females, and can hence estimates the gender wage gap at given quantile levels.

We first describe the data set which is used for our empirical study. It explains that how our data is

constructed from the original data source, and what characteristics are used to control for the observed

heterogeneity in the wage and selection equations. It also provides the descriptive statistics of those char-

acteristics as well as log wages and hours of work. Second, we explain how our estimation approach is

implemented in the empirical application. In particular, we do not need any instrumental variable which

appears in the selection equation but is excluded from the wage equation. Indeed, as argued by Blundell et

al. (2007), in general, such instruments derived from economic theory are hard to find. Finally, we show our

estimation results of potential wage quantiles for single/married male and female as well as gender wage

gap at different quantile levels after correcting the sample selection bias in the observed wage distribution.

5.1 Data Description

The data we used for the analysis is from the UK Family Expenditure Survey (FES) during the period of

1978-2000.9 The sample is constructed by following the previous papers analyzing this data set, see, e.g.,

Gosling et al. (2000), Blundell et al. (2003), Blundell et al. (2007), and Arellano and Bonhomme (2017). It

includes men and women with an age range of 23 to 59 who were not in full time education. It drops the

individuals who were self employed or had missing values for the demographic variables in Table 1. It also

excludes from the sample the observations who reported positive working hours but did not report any

wages.10 This gives us a sample of 162,532 individuals in total.

The hourly wage, the log of which is Y1 in our model, of each working individual is constructed by the

ratio of usual weekly earnings to usual weekly working hour (namely Y2). Besides gender and marital sta-

tus, we follow Blundell et al. (2003) to control the heterogeneity of wage distribution and sample selection

by including regressors of education (three categories: leaving school before 17, at 17 or 18, after 18), cohort

(five categories: born 1919-1934, 1935-1944, 1945-1954, 1955-1964, 1965-1977), region (12 standard regions),

time trend up to cubic term. To compare our results with Arellano and Bonhomme (2017), we also add the

regressors of number of kids split by age categories (with six dummies) and the measure of out-of-work

9The raw data of UK Family Expenditure Survey can be accessed in the UK Data Service through https://www.ukdataservice.

ac.uk.
10This drops about 2.95% of the observations that remained in the sample after previous cleaning procedure.
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income. The latter is evaluated using the IFS tax and benefit simulation model TAXBEN and was initially

used by Blundell et al. (2003) to interpret aggregate wage growth in the UK labor market.11 Table 1 pro-

vides the summary statistics of the log wage, usual weekly working hour, and the selected characteristics

of observations in the sample.

Table 1: Summary statistics

Variable Obs. Mean Std. Dev. Min Max
log wage 121,805 1.887 0.517 -0.465 4.299
hours 162,532 27.356 19.466 0 163
sex 162,532 0.540 0.498 0 1
married 162,532 0.748 0.434 0 1
# kids 162,532 0.974 1.143 0 12
out-of-work income 162,532 4.760 0.814 -6.127 8.893
left school ≤ 16 162,532 0.703 0.457 0 1
left school 17-18 162,532 0.157 0.364 0 1
left school 19+ 162,532 0.140 0.347 0 1
cohort 1919-1934 162,532 0.145 0.353 0 1
cohort 1935-1944 162,532 0.216 0.412 0 1
cohort 1945-1954 162,532 0.294 0.455 0 1
cohort 1955-1964 162,532 0.242 0.428 0 1
cohort 1965-1977 162,532 0.103 0.304 0 1
region 1 162,532 0.060 0.237 0 1
region 2 162,532 0.089 0.285 0 1
region 3 162,532 0.111 0.314 0 1
region 4 162,532 0.073 0.260 0 1
region 5 162,532 0.094 0.291 0 1
region 6 162,532 0.037 0.188 0 1
region 7 162,532 0.104 0.305 0 1
region 8 162,532 0.187 0.390 0 1
region 9 162,532 0.078 0.268 0 1
region 10 162,532 0.051 0.221 0 1
region 11 162,532 0.091 0.288 0 1
region 12 162,532 0.025 0.156 0 1

Notes: (i) sex = 0 for male and =1 for female;
(ii) married = 0 for single and = 1 for married;
(iii) the summary statistics for log wage are only for working subsample.

The wage inequality within and between genders changed dramatically in the UK during the last two

decades of twentieth century. Figure 1(a) demonstrates the within-gender inequality in terms of interdecile

range (IDR) of (log) wage distribution for working individuals over time.12 It shows that the within-gender

inequality for both males and females increases dramatically over time, with IDR from about 0.90 (1.01) in

1978 increasing to about 1.34 (1.28) in 2000 for males (females). Figure 1(b) provides the gender wage gap
11Blundell et al. (2007) and Arellano and Bonhomme (2017) also use this constructed measure of out-of-income to study the changes

in wage distributions of males and females in UK.
12Interdecile rage (IDR) is defined as the difference between the 9th decile and 1st decile.
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for 1st, 5th, and 9th deciles of (log) wage distributions of workers over time. We can see that the gender

wage gap for these three deciles has similar dynamic pattern over time: for instance, the median drops from

0.44 in the year of 1978, with an initial significant increase around 1980 and occasional increases later, to

0.28 in 2000. During the same period, the employment rates of males and females have varied much. Figure

1(c) shows how the employment rates evolved over time. The employment rate of males drops from 0.95

in 1978 to 0.80 in 1993, and then increases slowly back to 0.84 in 2000. Moreover, the employment rate of

females increases slowly from 0.64 in 1978 to 0.69 in 2000, with a significant growth during 1982-1990 and

non-monotonic fluctuations otherwise; it reaches lowest at 0.59 in 1982 and highest at 0.70 in 1999. Given

these facts about the changes of employment rates over time, it is crucial to correct the sample selection bias

when we evaluate the dynamics of (latent) wage inequality within and between genders in the sample.
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Figure 1: UK workers: IDR, gender wage gap, and employment rate, 1978-2000.

5.2 Estimation Procedure

We first describe the specification and implementation details of our estimation procedure in the appli-

cation. Our sample is divided into four subsamples according to the gender and marital status, i.e., the

parameters of our model, such as copula parameter and all quantile coefficients, are assumed to be gender

and marital-status specific. In each subsample, we use the potential out-of-work income as well as other

characteristics (i.e. education, cohort, region, time trend up to cubic term, and number of kids) as regres-

sors to control the heterogeneity of both wage distribution and sample selection process. In particular, we

do not exclude the potential out-of-work income from the wage equation. In other words, both the wage

and (censored) selection equations share the same set of regressors in our application. This is in contrast

with Arellano and Bonhomme (2017) which excludes the out-of-work income from the wage equation but

keep it in the (binary) selection equation, while all other characteristics appear in both wage and selection

equations.

To implement our estimation procedure, we choose the Frank copula to model the dependence between

U and V (which are the unobserved factors in the log-wage and working hours equations, respectively).

We obtain very similar results (not reported) by adopting the Gaussian copula instead of Frank copula.

In particular, we obtain an estimate of rank correlation very close to the one with Frank copula. Thus our

empirical findings seem not sensitive to the choice of copula in our estimation. After obtaining the estimates

of γ(·) from the three-step estimation procedure of Chen (2018), we use our two-step estimation procedure
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to recover the quantile and copula coefficients β(·) and ρ. The subsample selector δn is chosen to be the 1%

quantile of those positive X′i γ̂(·) in both steps of our estimation, similar to Chernozhukov and Hong (2002)

and Chen (2018). In the second step, we use ϕ(X) = (1, X, X ⊗ X) as the instruments13 to search for the

best ρ among 200 grid points.14

5.3 Main Results

We next present our main empirical findings. Figures 2 and 3 show, respectively, the dynamics of deciles

of log-wages for both males and females and the evolution of IDR, which measures the within-gender

inequality, and figures 4-6 provide the dynamics of gender wage gap. The lines for males (females) are in

black (red). We display the quantities (e.g., deciles of log-wages, IDR, and gender wage gap) of workers in

solid lines, and the ones given by our method in dotted lines. Our two-step procedure is used to estimate the

quantile coefficients β(·) (in wage equation) and copula parameter ρ. The approach of Machado and Mata

(2005) is then adopted to simulate the (unconditional) wage distribution after correcting for the sample

selection bias. The results of Arellano and Bonhomme (2017) are included for comparison.15 They are

shown in dashed lines and labeled as AB17.
We first examine the results of males. Regarding the copula estimates of males, we obtain a Spearman’s

rank correlation (implied by the copula estimate) of -0.33 (with s.e. of 0.018) for married males and -0.28

(with s.e. of 0.027) for singles. In contrast, Arellano and Bonhomme (2017) obtained a rank correlation of

-0.24 (with 95% confidence interval of (-0.35,-0.06)) for married males and -0.79 (with 95% confidence inter-

val of (-0.84,-0.42)) for singles. Consequently, with much smaller standard errors compared with Arellano

and Bonhomme (2017),16 our copula estimates imply that both the married and single males have negative

selection into employment, whereas Arellano and Bonhomme’s (2017) estimates imply significant positive

selections into employment for single males,17 less so for married males. One of our most striking find-

ings is the negative selection into employment for males. Ermisch and Wright (1994) argued that negative

selection into employment is very plausible when there is relatively high positive correlation between the

wage offer and reservation wage of a potential worker. Such a (relatively high) positive correlation is pos-

sible since a person with higher productivity in outside jobs tends to be more competent in tasks at home.

For other papers finding evidence of negative selection into employment, see, e.g., Dolton and Makepeace

(1987), Steinberg (1989), Wright and Ermisch (1991), Mulligan and Rubinstein (2008), and Mocan and Unel

(2017).

Figure 2 shows the effect to correct the aforementioned selection bias in the wage distribution of males.

It suggests that our selection correction is significant for males at lower deciles. At the 10th percentile,

13We also tried ϕ(X, τ0) = (1, X, [X′γ(τ0)]
2) and obtained very similar estimation results.

14⊗ denotes the Kronecker tensor product.
15We also applied the Type 3 Tobit model in empirical analysis. It turns out the latent average wage curve after the Tobit correction

is very similar to the latent median wage curve based on our estimation procedure. However, the strong homogeneity associated with
the Tobit 3 model implies parallel latent quantile wage curves, in contrast to our selection corrected heterogeneous decile curves.

16Our standard errors for the copula parameters are smaller than Arellano and Bonhomme (2017), since our model is more informa-
tive with a censored selection (based on working hours) whereas they are working with a binary selection which codes the working
hours into binary employment status.

17A negative copula coefficient of Arellano and Bonhomme(2017) (resp. ours) means positive (resp. negative) selection into em-
ployment and vice versa, since Arellano and Bonhomme (2017) adopted a different sign normalization from ours.
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the observed wage of males increases by 8.8% during the period of 1978-2000, but our latent male wage

increases by 13.1% in contrast with almost no increase in the latent male wage of Arellano and Bonhomme

(2017). Sizable differences among those three wages can also be observed for the 20th and 30th percentiles.

For the middle and high deciles, our latent wage differs less (resp. significantly) from the observed wage

before (resp. after) 1993 but deviates significantly from the Arellano and Bonhomme’s (2017) estimates of

latent wage during the whole period.
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Figure 2: First nine deciles of wage distribution after no, AB17, and our corrections (Black for males and
red for females).

Second, we present the results of females. We obtain an estimate of copula with a rank correlation of

0.28 (with s.e. of 0.027) for married females and -0.06 (with s.e. of 0.041) for singles, while Arellano and

Bonhomme’s (2017) estimates of rank correlations are -0.17 (with 95% confidence interval of (-0.30,-0.01) )

for married females and -0.08 (with confidence interval of (-0.24,0.16)) for singles. We thus obtain similar

direction of selection to Arellano and Bonhomme (2017), i.e., positive selection for married females but

20



insignificant selection for singles, except that our estimates are more significant quantitatively with much

smaller standard errors.
Figure 2 also displays the effect of selection bias correction for females. It shows that our correction

of sample selection is more significant than Arellano and Bonhomme (2017) in all nine deciles of wage

distribution for females. Specifically, our results show a further correction from the outcome of Arellano

and Bonhomme (2017), and have a magnitude of correction as large as twice to four times of theirs in most

cases. On average, our result provides bias corrections of 0.09 (10%), 0.06 (50%), and 0.12 (90%) , while

Arellano and Bonhomme (2017) has bias corrections of 0.03 (10%), 0.03 (50%), and 0.03 (90%).

We examine within-gender inequality (in terms of IDR) and gender wage gap shown in figure 3 and

in figures 4-6 respectively. With all three estimates of within-gender wage inequality increasing over time,

figure 3 shows that our within-gender inequality is significantly smaller than those of Arellano and Bon-

homme (2017) for both males and females. In addition, our increase is significantly less than those that

correspond to the observed and the estimates of Arellano and Bonhomme (2017) for males, but is compara-

ble for females.
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Figure 3: The IDR for both males and females after no, AB17, and our corrections.

Regarding gender wage gap dynamics, figure 4 shows that all of the three estimates of gender wage gap

decline over time. Specifically, our estimate of wage gap is largest among the three in all deciles, and the

other two estimates almost coincide in the middle and high deciles with Arellano and Bonhomme’s (2017)

estimate below the one with no correction in the low deciles. Nevertheless, ours has the smallest reduction
among the three in all deciles with a few exceptions starting from 1978 (but with no exceptions starting

from 1981). For example, during the period of 1978-2000, the average gender wage gaps are 0.51 (ours), 0.31

(AB17), and 0.39 (no correction) in the 10th percentile, and 0.50 (ours), 0.40 (AB17), and 0.42 (no correction)
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Figure 4: The gender wage gap after no, AB17, and our corrections.

in the 50th percentile, and 0.49 (ours), 0.35 (AB17), and 0.36 (no correction) in the 90th percentile. Figures

5 and 6 further show the gender wage gaps for single and married groups, respectively. Our estimate of

gender wage gap still has the largest value but minimal reduction among the three estimates for both single

and married groups; while Arellano and Bonhomme’s (2017) estimate of gender wage gap is much smaller

than the one with no correction in low and middle deciles for singles (in the 10th percentile, the averages

are 0.01 for AB17 and 0.26 for no correction; in the median case, they are 0.10 for AB17 and 0.20 for no

correction; in the 90th percentile, they become 0.11 for AB17 and 0.16 for no correction) but is very close to

the one with no correction in all deciles for married (in the 10th percentile, the averages are 0.45 for AB17

and 0.43 for no correction; in the median case, they are 0.50 for AB17 and 0.49 for no correction; in the 90th

percentile, they become 0.43 for AB17 and 0.41 for no correction). To better understand the above findings

on the gender wage gap reductions, note that in Panel c) of Figure 1, the striking pattern is that the male

participation rate has decreased a lot, from 95% to around 80-85%, while the female participation rate has

slightly increased. As the participation and wage unobservables V and U are negatively correlated, we

observe the wages of “worse” males at the end than at the start of the period, and we observe the wages

of “better” females at the end than at the start of the period. Thus, the reduction in the the gender wage

gap over the period stems from this compositional change, which is why accounting for selection leads to a

much lower reduction of the gender-wage gap in our estimate.18 As Arellano and Bonhomme (2017) found

that the men in employment are positively selected, accounting for selection with their method leads to a

18We thank an anonymous referee for suggesting this explanation.
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Figure 5: The gender wage gap for singles after no, AB17, and our corrections.
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Figure 6: The gender wage gap for married after no, AB17, and our corrections.
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larger, not lower, reduction of the gender-wage gap in their estimate.19

In summary, among our most important results, our analysis reveals that (i) there is a significant nega-

tive selection for males; (ii) the bias correction is significant for females, with the magnitude of corrections

two to four times as in Arellano and Bonhomme (2017); (iii) the gender wage gap has remained large and

the wage gap reduction has been very limited, in particular, accounting for selection bias leads to a much

smaller reduction over time, compared with the observed wage gap and the selection corrected version of

Arellano and Bonhomme (2017).

6 Conclusion

In this paper, we have proposed a quantile selection model with censored selection where both the latent

outcome and participation equations are modelled as semiparametric quantile regressions, and the selection

bias is modelled through a copula function. With a censored selection, no exclusion restriction is needed

for identification. We have further developed estimators for the copula parameter and quantile regression

coefficients in the outcome equation. We applied our method to study the evolution of wage inequality in

the UK.
In the paper we focus on the outcome equation with exogenous regressors. Vella (1993) and Lee and

Vella (2006) studied sample selection model with endogeneity, which is also subject to censored selection

rules. Quantile regression with endogeneity has been studied by Chernozhukov and Hansen (2006, 2008)

and Chen (2018). As endogeneity arises frequently in empirical analysis of economic data, it is interesting

to incorporate endogeneity in our framework. This is an interesting topic for future research.

Appendix A. Proofs of Theorems

Lemma A1. Suppose Assumptions A.1-A.6 and A.9 are satisfied, then β̂ (τ, ρ) is uniformly consistent

and has uniform asymptotic linear representation for any given τ ∈
[
τ∗l , τ∗u

]
and ρ ∈ $,

sup
ρ∈$

∥∥β̂ (τ, ρ)− β (τ, ρ)
∥∥ = op (1) (A1)

and
√

n
(

β̂ (τ, ρ)− β (τ, ρ)
)
=

1√
n

n

∑
i=1

φ̃βi (τ, ρ) + op (1) (A2)

19To further explore possible causes behind the discrepancy between our findings and those of Arellano and Bonhomme (2017), we
have conducted some further analysis. In particular, we implement our procedure with the exclusion restriction imposed; it turns
out that the results are not significantly different, even though the out-of-work income is statistically significant in the wage equa-
tion. Another angle worth exploring is the validity of the probit specification for participation adopted in Arellano and Bonhomme
(2017), which rules out heteroscedasticity commonly present in practice. Indeed, some specification analysis indicates that the probit
participation for the current application is seriously misspecified.
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where β (τ, ρ) = 1
#J0

∑τ0∈J0
β (τ, τ0, ρ) and φ̃βi (τ, ρ) is defined in the proof below in (A.4); Furthermore,

β̂ (τ, ρ) satisfies the asymptotic tightness property

(
β̂ (τ, ρ)− β (τ, ρ)

)
−
(

β̂ (τ, ρ̄)− β (τ, ρ̄)
)
= op

(
n−1/2

)
(A3)

uniformly in ρ and ρ̄ in the op (1) neighborhood of ρ0.

Proof of Lemma A1: Recall that

Q1n (b, γ, ρ, δ, τ0, τ) =
1
n

n

∑
i=1

q1 (ξi, b, γ, ρ, δ, τ, τ0)

and
Q1 (b, γ (τ0) , ρ, δ, τ0, τ) = Eq1 (ξ, b, γ (τ0) , ρ, δ, τ, τ0)

with
Q1 (b, γ (τ0) , ρ, τ0, τ) = Eq1 (ξ, b, γ (τ0) , ρ, 0, τ, τ0)

Define the class of functions

M1 = {q1 (ξ, b, γ, ρ, δ, τ, τ0) : (b, γ, ρ) ∈ B× Γ× $, δ, τ ∈ [τ∗l , τ∗u ] , τ0 ∈ [τl , τu]}

where

q1 (ξ, b, γ, ρ, δ, τ, τ0) =1
{

Z′γ > δ
}

1
{

Y2 > Z′γ
}

×
[
C (τ, τ0, ρ)

(
Y− X′b

)+
+ (1− C (τ, τ0, ρ))

(
Y− X′b

)−]
It is straightforward to verify that M1 is Euclidean (Pakes and Pollard, 1989) with a square integrable

envelop, then we have

Q1n (b, γ̂(τ0), ρ, δn, τ0, τ)−Q1 (b, γ(τ0), ρ, τ0, τ)

=
[
Q1n (b, γ̂(τ0), ρ, δn, τ0, τ)−Q1 (b, γ̂(τ0), ρ, δn, τ0, τ)

]
+
[
Q1 (b, γ̂(τ0), ρ, δn, τ0, τ)−Q1 (b, γ(τ0), ρ, τ0, τ)

]
=op (1)

uniformly in (b, ρ, τ0, τ) ∈ B × $ × [τl , τu] × [τ∗l , τ∗u ], where the difference in the first bracket on the right

hand side of first equality is op(1) following from the uniform law of large numbers (Pakes and Pollard,

1989) and the difference in the second bracket is also op(1) following from the Assumptions A.5-A.7.

For any given (ρ, τ0, τ) ∈ $× [τl , τu]× [τ∗l , τ∗u ], since β (τ, τ0, ρ) is the unique minimizer of Q1 (b, γ (τ0) , ρ, 0, τ0, τ),

which is continuous in b, together with the compactness for the parameter space, we obtain

β̂ (τ, τ0, ρ)− β (τ, τ0, ρ) = op (1)

In addition, note that β (τ, τ0, ρ) is continuous in (τ, τ0, ρ). Then, by Lemma A.1 in Carroll et. al., (1997), it

follows that
β̂ (τ, τ0, γ, ρ)− β (τ, τ0, γ, ρ) = op (1)
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holds uniformly in (ρ, τ0, τ) ∈ $× [τl , τu]× [τ∗l , τ∗u ].

Next, following the subgradient argument in Powell (1984), Honoré (1992) and Chen (2018), with prob-

ability approaching one we have

G1n
(

β̂ (τ, τ0, ρ) , γ̂ (τ0) , ρ, δn, τ0, τ
)
= op

(
n−1/2

)
uniformly in (τ0, τ, ρ), where

G1n (b, γ, ρ, δ, τ, τ0) =
1
n

n

∑
i=1

g1 (ξi, b, γ, ρ, δ, τ, τ0)

with
g1 (ξi, b, γ, ρ, δ, τ, τ0) = 1

{
X′i γ > δ

}
1
{

Y2i > X′i γ
} (

1
{

Y1i < X′i b
}
− C (τ, τ0, ρ)

)
Xi

Let G1 be the class of functions

G1 = {g1 (ξi, b, γ, δ, ρ, τ, τ0) : τ, τ0 ∈ (0, 1) , δ, b ∈ B, γ ∈ Γ, ρ ∈ $}

Similar to M1, G1 is also Euclidean with a square integrable envelop; then by Lemma 2.17 (Pakes and

Pollard, 1989), we obtain

op

(
n−1/2

)
=G1n

(
β̂ (τ, τ0, ρ) , γ̂ (τ0) , δn, ρ, τ0, τ

)
=G1n (β (τ, τ0, ρ) , γ (τ0) , δn, ρ, τ0, τ)

+
[
G1
(

β̂ (τ, τ0, ρ) , γ̂ (τ0) , δn, ρ, τ0, τ
)
− G1 (β (τ, τ0, ρ) , γ (τ0) , δn, ρ, τ0, τ)

]
+ op

(
n−1/2

)
uniformly in (τ0, τ, ρ), where

G1 (b, γ, β, ρ, δ, τ0, τ) = E [g1 (ξi, b, γ, ρ, δ, τ, τ0)]

Then, it is straightforward to show that[
G1
(

β̂ (τ, τ0, ρ) , γ̂ (τ0) , ρ, δn, τ0, τ
)
− G1 (β (τ, τ0, ρ) , γ (τ0) , ρ, δn, τ0, τ)

]
=∂G1β(τ, τ0, ρ)

(
β̂ (τ, τ0, ρ)− β (τ, τ0, ρ)

)
+ ∂G1γ(τ, τ0, ρ) (γ̂ (τ0)− γ (τ0)) + op

(
n−1/2 +

(
β̂ (τ, τ0, ρ)− β (τ, τ0, ρ)

))
uniformly in (ρ, τ0, τ) ∈ $× [τl , τu]× [τ∗l , τ∗u ]. From the above results, we can deduce that

√
n
(

β̂ (τ, τ0, ρ)− β(τ, τ0, ρ)
)
=∂G−1

1β (τ, τ0, ρ)
√

nG1n (β (τ, τ0, ρ) , γ (τ0) , ρ, 0, τ0, τ)

+∂G−1
1β (τ, τ0, ρ)∂G1γ(τ, τ0, ρ)

√
n(γ̂(τ0)− γ (τ0)) + op (1)

=
1√
n

n

∑
i=1

φ̃βi (τ, τ0, ρ) + op (1)
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where

φ̃βi (τ, τ0, ρ) =∂G−1
1β (τ, τ0, ρ)g1 (ξi, β (τ, τ0, ρ) , γ (τ0) , ρ, 0, τ, τ0) (A.4)

+ ∂G−1
1β (τ, τ0, ρ)∂G1γ(τ, τ0, ρ)φγi (τ0)

Thus, we have
√

n
(

β̂ (τ, ρ)− β(τ, ρ)
)
=

1√
n

n

∑
i=1

φ̃βi (τ, ρ) + op (1)

uniformly in (ρ, τ0, τ) ∈ $× [τl , τu]× [τ∗l , τ∗u ], where

φ̃βi (τ, ρ) =
1

#J0
∑

τ0∈J0

φ̃βi (τ, τ0, ρ)

Then from Lemma 2.17 of Pakes and Pollard (1989), we can further deduce that

(
β̂ (τ, ρ)− β (τ, ρ)

)
−
(

β̂ (τ, ρ̄)− β (τ, ρ̄)
)
= op

(
n−1/2

)
uniformly in ρ and ρ̄ in the op (1) neighborhood of ρ0.

Proof of Theorem 1: We first establish consistency. Similar to the arguments in the proof of Lemma A1, we

can establish the following uniform convergence result

sup
ρ∈$

sup
τ0,τ∈[τl ,τu ]×[τ∗l ,τ∗u ]

∥∥G2n
(

β̂ (τ, ρ) , γ̂ (τ0) , ρ, δn, τ0, τ
)
− G2

(
β̂ (τ, ρ) , γ̂ (τ0) , ρ, δn, τ0, τ

)∥∥ = op (1)

In addition, from Lemma A1 and Assumption A.5 , we can deduce that

sup
ρ∈$

sup
τ0,τ∈[τl ,τu ]×[τ∗l ,τ∗u ]

∥∥G2
(

β̂ (τ, ρ) , γ̂ (τ0) , ρ, δn, τ0, τ
)
− G2 (β (τ, ρ) , γ (τ0) , ρ, 0, τ0, τ)

∥∥ = op (1)

where
G2 (b, γ, β, ρ, δ, τ0, τ) = E [g2 (ξi, b, γ, ρ, δ, τ, τ0)]

Consequently, it is straightforward to show that

G2n (ρ) = Ḡ2 (ρ) + op (1)

uniformly in ρ ∈ $, which, together with the Assumption A.8 and the fact that Ḡ2 (ρ) is continuous and the

parameter space for ρ is compact, establish the consistency of ρ̂.

We now follow the arguments of Pakes and Pollard (1989) to establish
√

n-consistency and asymptotic

normality. First we linearize the appropriate moment equations. Similar to the arguments in the proof of
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Lemma A1, we can show that

G2n
(

β̂ (τ, ρ) , γ̂ (τ0) , ρ, δn, τ0, τ
)

=G2n (β (τ, ρ0) , γ (τ0) , ρ0, δn, τ0, τ)

+ ∂G2β (τ, τ0, ρ0)
(

β̂ (τ, ρ0)− β (τ, ρ0)
)

+ ∂G2γ (τ, τ0, ρ0) (γ̂ (τ0)− γ (τ0))

+

(
∂G2β (τ, τ0, ρ0)

∂

∂ρ
β(τ, ρ0) + ∂G2ρ (τ, τ0, ρ0)

)
(ρ− ρ0) + op

(
(ρ− ρ0) + n−1/2

)
=L∗2n(τ0, τ) + L2(τ0, τ)(ρ− ρ0) + op

(
(ρ− ρ0) + n−1/2

)
uniformly in τ ∈ [τ∗l , τ∗u ], τ0 ∈ [τl , τu] and ρ in the op (1)-neighborhood of ρ0, where

L̃2n(τ0, τ) =G2n (β (τ, ρ0) , γ (τ0) , ρ0, τ0, τ)

+
1
n

n

∑
i=1

(
∂G2β (τ, τ0, ρ0) φ̃βi(τ, ρ0) + ∂G2γ (τ, τ0, ρ0) φγi(τ0)

)
and

L2(τ0, τ) = ∂G2β (τ, τ0, ρ0)
∂

∂ρ
β(τ, ρ0) + ∂G2ρ (τ, τ0, ρ0)

Then, following the arguments in Pakes and Pollard (1989), we can establish the
√

n consistency of ρ̂, and

furthermore

√
n(ρ̂− ρ0) =

 ∑
τ0∈J0,τ∈J1

L′2(τ0, τ)L2(τ0, τ)

−1

∑
τ0∈J0,τ∈J1

L′2(τ0, τ)
√

nL̃2n(τ0, τ) + op (1)

=
1√
n

n

∑
i=1

φρi + op (1)

where

√
nL̃2n(τ0, τ) =

1√
n

n

∑
i=1

g2 (ξi, β (τ, ρ0) , γ (τ0) , ρ0, 0, τ, τ0)

+ ∂G2β (τ, τ0, ρ0) φ̃βi(τ) + ∂G2γ (τ, τ0, ρ0) φγi(τ0)

Then, by (A3) of Lemma A1, we obtain

√
n
(

β̂ (τ, ρ̂)− β (τ, ρ0)
)
=
√

n
(

β̂ (τ, ρ0)− β (τ)
)
+
√

n (β (τ, ρ̂)− β (τ, ρ0)) + op (1)

=
1√
n

n

∑
i=1

φ̃βi (τ) +
1√
n

n

∑
i=1

∂β (τ, ρ0)

∂ρ
φρi + op (1)

=
1√
n

n

∑
i=1

φβi (τ) + op (1)
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where

φβi (τ) = φ̃βi (τ) +
∂β (τ, ρ0)

∂ρ
φρi

Therefore, we have

√
n

[
β̂ (τ, ρ̂)− β (τ)

ρ̂− ρ0

]
=

1√
n

n

∑
i=1

φθi(τ) + op (1)

where φθi(τ) =
(

φ′βi (τ) , φ′ρi

)′
. Consequently, Theorem 1 follows by applying the Central Limit Theorem.

Proof of Theorem 2: Following the proof of Theorem 1, we can establish the consistency of ρ̂∗ and β̂∗ (τ, ρ̂∗)

jointly in space P× Pη . Furthermore, we can also establish the asymptotic linear representations

√
n

[
β̂ (τ, ρ̂)− β (τ)

ρ̂− ρ0

]
=

1√
n

n

∑
i=1

φθi(τ) + op (1)

and

√
n

[
β̂∗ (τ, ρ̂∗)− β (τ)

ρ̂∗ − ρ0

]
=

1√
n

n

∑
i=1

ηiφθi(τ) + op (1)

Therefore, we have

√
n

[
β̂∗ (τ, ρ̂∗)− β̂ (τ, ρ̂)

ρ̂∗ − ρ̂

]
=

1√
n

n

∑
i=1

(ηi − 1)φθi(τ) + op (1)

Then Theorem 2 follows from the conditional Central Limit Theorem (Th. 2.9.6, van der Vaart and Wellner,

1996).
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Appendix B. Tables for simulation

Table 2: Simulation results for homoscedastic case with Gaussian copula

n = 250 n = 500
τ β(τ) Bias SD RMSE Bias SD RMSE
0.10 -2.282 0.451 0.173 0.483 0.299 0.140 0.330

1.000 -0.001 0.189 0.188 -0.005 0.146 0.146
1.000 0.005 0.177 0.177 -0.005 0.141 0.141

0.25 -1.674 0.092 0.177 0.199 0.039 0.134 0.140
1.000 -0.005 0.157 0.157 -0.005 0.115 0.115
1.000 0.002 0.154 0.154 0.000 0.112 0.112

0.50 -1.000 -0.028 0.161 0.163 -0.037 0.125 0.130
1.000 -0.002 0.131 0.131 0.002 0.098 0.098
1.000 -0.004 0.131 0.131 0.009 0.089 0.090

0.75 -0.326 -0.031 0.138 0.141 -0.021 0.108 0.110
1.000 -0.008 0.125 0.125 0.001 0.094 0.093
1.000 -0.005 0.127 0.127 0.006 0.089 0.089

0.90 0.282 -0.024 0.135 0.136 -0.015 0.103 0.104
1.000 -0.007 0.145 0.145 -0.003 0.103 0.103
1.000 -0.005 0.142 0.142 0.000 0.100 0.099

ρ ρ0 = 0.700 0.019 0.100 0.101 0.017 0.067 0.069
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Table 3: Simulation results for homoscedastic case with Frank copula

n = 250 n = 500
τ β(τ) Bias SD RMSE Bias SD RMSE
0.10 -2.282 0.359 0.249 0.437 0.172 0.215 0.275

1.000 0.006 0.230 0.230 0.009 0.201 0.200
1.000 -0.012 0.247 0.247 0.022 0.205 0.206

0.25 -1.674 0.017 0.211 0.212 -0.038 0.192 0.195
1.000 0.001 0.185 0.185 0.000 0.145 0.145
1.000 0.001 0.200 0.200 0.018 0.152 0.153

0.50 -1.000 -0.078 0.162 0.179 -0.053 0.134 0.144
1.000 -0.004 0.134 0.134 0.007 0.089 0.089
1.000 0.003 0.136 0.136 0.011 0.095 0.095

0.75 -0.326 -0.045 0.126 0.133 -0.031 0.091 0.095
1.000 0.002 0.118 0.118 0.006 0.079 0.079
1.000 0.002 0.118 0.118 -0.001 0.078 0.078

0.90 0.282 -0.027 0.137 0.140 -0.021 0.093 0.095
1.000 0.008 0.141 0.141 0.010 0.100 0.101
1.000 0.003 0.135 0.135 -0.001 0.090 0.089

ρ ρ0 = 5.628 0.921 1.813 2.031 0.512 1.215 1.317
Kendall’s τ true = 0.494 0.035 0.083 0.090 0.021 0.061 0.065

Table 4: Simulation results for heteroscedastic case with Gaussian copula

n = 250 n = 500
τ β(τ) Bias SD RMSE Bias SD RMSE
0.10 -2.282 0.404 0.181 0.443 0.255 0.159 0.301

0.487 0.277 0.193 0.338 0.215 0.152 0.263
1.000 -0.003 0.187 0.186 -0.010 0.153 0.153

0.25 -1.674 0.064 0.177 0.188 0.024 0.139 0.141
0.730 0.099 0.161 0.189 0.073 0.113 0.134
1.000 -0.006 0.161 0.161 -0.004 0.118 0.118

0.50 -1.000 -0.039 0.162 0.166 -0.033 0.118 0.122
1.000 0.014 0.137 0.138 0.013 0.087 0.088
1.000 -0.007 0.133 0.133 0.008 0.088 0.089

0.75 -0.326 -0.033 0.133 0.137 -0.016 0.104 0.105
1.270 -0.016 0.121 0.122 -0.002 0.085 0.085
1.000 -0.007 0.126 0.126 0.006 0.087 0.087

0.90 0.282 -0.024 0.134 0.136 -0.009 0.101 0.101
1.513 -0.035 0.143 0.147 -0.016 0.096 0.097
1.000 -0.005 0.139 0.139 -0.000 0.096 0.095

ρ ρ0 = 0.700 0.020 0.099 0.101 0.011 0.066 0.067
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Table 5: Simulation results for heteroscedastic case with Frank copula

n = 250 n = 500
τ β(τ) Bias SD RMSE Bias SD RMSE
0.10 -2.282 0.298 0.276 0.406 0.124 0.232 0.263

0.487 0.288 0.245 0.378 0.219 0.207 0.301
1.000 -0.003 0.268 0.268 0.028 0.212 0.213

0.25 -1.674 -0.018 0.231 0.231 -0.049 0.200 0.205
0.730 0.101 0.197 0.221 0.073 0.140 0.157
1.000 0.003 0.205 0.205 0.016 0.152 0.153

0.50 -1.000 -0.090 0.172 0.194 -0.050 0.135 0.143
1.000 0.006 0.136 0.136 0.011 0.088 0.089
1.000 0.004 0.136 0.136 0.007 0.093 0.093

0.75 -0.326 -0.044 0.123 0.131 -0.024 0.092 0.095
1.270 -0.012 0.119 0.119 -0.003 0.076 0.076
1.000 0.001 0.118 0.118 -0.002 0.076 0.076

0.90 0.282 -0.019 0.136 0.138 -0.010 0.096 0.097
1.513 -0.017 0.137 0.138 -0.011 0.093 0.094
1.000 0.005 0.132 0.132 -0.001 0.090 0.090

ρ ρ0 = 5.628 0.911 1.876 2.083 0.422 1.202 1.273
Kendall’s τ true = 0.494 0.034 0.085 0.091 0.016 0.062 0.064

Table 6: Simulation results for homoscedastic Gaussian case without excluded covariates

n = 250 n = 500
τ β(τ) Bias SD RMSE Bias SD RMSE
0.10 -2.282 0.430 0.191 0.470 0.276 0.145 0.312

1.000 0.010 0.200 0.200 -0.008 0.152 0.152
1.000 0.020 0.194 0.195 0.012 0.150 0.150

0.25 -1.674 0.098 0.183 0.207 0.035 0.142 0.146
1.000 0.003 0.162 0.162 -0.002 0.123 0.123
1.000 0.012 0.159 0.160 -0.001 0.113 0.113

0.50 -1.000 -0.018 0.174 0.175 -0.034 0.121 0.125
1.000 0.005 0.129 0.129 0.006 0.095 0.095
1.000 0.005 0.137 0.137 0.007 0.092 0.092

0.75 -0.326 -0.031 0.143 0.146 -0.019 0.101 0.102
1.000 0.014 0.127 0.127 0.004 0.097 0.096
1.000 0.003 0.123 0.123 0.005 0.094 0.094

0.90 0.282 -0.026 0.135 0.137 -0.013 0.101 0.102
1.000 0.020 0.149 0.150 0.003 0.105 0.105
1.000 0.004 0.135 0.135 0.001 0.104 0.104

ρ ρ0 = 0.700 0.015 0.103 0.104 0.017 0.070 0.072
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Table 7: Simulation results for homoscedastic Frank case without excluded covariates

n = 250 n = 500
τ β(τ) Bias SD RMSE Bias SD RMSE
0.10 -2.282 0.366 0.259 0.448 0.158 0.230 0.279

1.000 -0.012 0.234 0.234 -0.002 0.228 0.228
1.000 -0.001 0.246 0.246 0.011 0.200 0.200

0.25 -1.674 0.038 0.229 0.232 -0.035 0.193 0.196
1.000 -0.007 0.184 0.184 -0.007 0.163 0.163
1.000 -0.009 0.199 0.198 0.004 0.144 0.143

0.50 -1.000 -0.063 0.180 0.190 -0.054 0.142 0.152
1.000 -0.001 0.119 0.118 -0.003 0.100 0.100
1.000 0.002 0.134 0.134 -0.001 0.093 0.093

0.75 -0.326 -0.039 0.129 0.135 -0.033 0.097 0.102
1.000 0.002 0.106 0.105 0.001 0.083 0.083
1.000 0.002 0.115 0.115 0.003 0.081 0.081

0.90 0.282 -0.031 0.134 0.137 -0.016 0.095 0.097
1.000 0.001 0.127 0.127 0.001 0.096 0.096
1.000 -0.005 0.130 0.130 0.005 0.098 0.098

ρ ρ0 = 5.628 0.843 1.798 1.984 0.563 1.330 1.443
Kendall’s τ true = 0.494 0.031 0.088 0.093 0.022 0.066 0.070

Table 8: Simulation results for heteroscedastic Gaussian case without excluded covariates

n = 250 n = 500
τ β(τ) Bias SD RMSE Bias SD RMSE
0.10 -2.282 0.395 0.198 0.442 0.245 0.156 0.290

0.487 0.276 0.227 0.358 0.185 0.168 0.250
1.000 0.008 0.215 0.215 -0.005 0.173 0.173

0.25 -1.674 0.076 0.190 0.204 0.019 0.146 0.147
0.730 0.102 0.178 0.205 0.062 0.130 0.144
1.000 0.001 0.176 0.176 -0.008 0.127 0.127

0.50 -1.000 -0.030 0.175 0.177 -0.039 0.122 0.128
1.000 0.023 0.132 0.134 0.012 0.105 0.105
1.000 0.002 0.147 0.147 0.004 0.101 0.101

0.75 -0.326 -0.032 0.142 0.145 -0.019 0.103 0.104
1.270 0.010 0.133 0.133 0.001 0.099 0.099
1.000 0.007 0.133 0.133 0.007 0.102 0.102

0.90 0.282 -0.018 0.131 0.132 -0.011 0.100 0.100
1.513 0.004 0.157 0.157 -0.009 0.108 0.108
1.000 0.007 0.148 0.148 0.003 0.114 0.114

ρ ρ0=0.700 0.017 0.100 0.102 0.017 0.072 0.073
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Table 9: Simulation results for heteroscedastic Frank case without excluded covariates

n = 250 n = 500
τ β(τ) Bias SD RMSE Bias SD RMSE
0.10 -2.282 0.313 0.286 0.423 0.124 0.247 0.276

0.487 0.257 0.277 0.378 0.174 0.237 0.294
1.000 -0.016 0.288 0.288 -0.010 0.240 0.240

0.25 -1.674 0.007 0.247 0.247 -0.064 0.208 0.218
0.730 0.090 0.210 0.228 0.050 0.165 0.172
1.000 -0.018 0.220 0.221 -0.003 0.169 0.169

0.50 -1.000 -0.074 0.187 0.201 -0.061 0.145 0.157
1.000 0.009 0.136 0.137 -0.004 0.105 0.105
1.000 0.001 0.144 0.144 -0.001 0.103 0.103

0.75 -0.326 -0.044 0.132 0.138 -0.033 0.097 0.103
1.270 -0.010 0.121 0.121 -0.008 0.085 0.085
1.000 0.003 0.126 0.126 0.005 0.088 0.088

0.90 0.282 -0.030 0.135 0.138 -0.015 0.098 0.099
1.513 -0.024 0.144 0.146 -0.011 0.102 0.102
1.000 -0.001 0.142 0.142 0.005 0.103 0.103

ρ ρ0 = 5.628 0.903 1.896 2.098 0.568 1.350 1.463
Kendall’s τ true = 0.494 0.033 0.089 0.095 0.022 0.067 0.071
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