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ABSTRACT. This paper studies the rationalization and identification of binary games where

players have correlated private types. Allowing for type correlation is crucial in global games

and in models with social interactions as it represents correlated private information and

homophily, respectively. Our approach is fully nonparametric in the joint distribution of

types and the strategic effects in the payoffs. First, under monotone pure Bayesian Nash

Equilibrium strategy, we characterize all the restrictions if any on the distribution of players’

choices imposed by the game-theoretic model as well as restrictions associated with two as-

sumptions frequently made in the empirical analysis of discrete games. Namely, we consider

exogeneity of payoff shifters relative to private information, and mutual independence of

private information given payoff shifters. Second, we study the nonparametric identification

of the payoff functions and types distribution. We show that the model with exogenous

payoff shifters is fully identified up to a single location–scale normalization under some

exclusion restrictions and rank conditions. Third, we discuss partial identification under

weaker conditions and multiple equilibria. Lastly, we briefly point out the implications of

our results for model testing and estimation.

Keywords: Rationalization, Identification, Discrete Game, Social Interactions, Global Games
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1. INTRODUCTION

Many economic problems are naturally modeled as games of incomplete information

(see Morris and Shin, 2003). Over the last decades, such games have been much successful

for understanding the strategic interactions among agents in various economic and social

situations. A leading example is auctions with e.g. Vickrey (1961), Riley and Samuelson

(1981), Milgrom and Weber (1982) for the theoretical side, and Porter (1995), Guerre et al.

(2000) and Athey and Haile (2002) for the empirical component. In this paper, we study

the identification of static binary games of incomplete information where players have

correlated types.1 We characterize all the restrictions if any imposed by such games on the

observables, which are the players’ choice probabilities. Following the work by Laffont and

Vuong (1996) and Athey and Haile (2007) for auctions, our approach is fully nonparametric.

The empirical analysis of static discrete games is almost thirty years old. The range of

applications includes labor force participation (e.g. Bjorn and Vuong, 1984, 1985; Kooreman,

1994; Soetevent and Kooreman, 2007), firms’ entry decisions (e.g. Bresnahan and Reiss,

1990, 1991; Berry, 1992; Tamer, 2003; Berry and Tamer, 2006; Jia, 2008; Ciliberto and Tamer,

2009), and social interactions (e.g. Kline, 2015). These papers deal with discrete games

under complete information. More recently, discrete games under incomplete information

have been used to analyze social interactions by Brock and Durlauf (2001, 2007) and Xu

(ming) among others, firm entry and location choices by Seim (2006), timing choices of

radio stations commercials by Sweeting (2009), stock market analysts’ recommendations by

Bajari et al. (2010), capital investment strategies by Aradillas-Lopez (2010) and local grocery

markets by Grieco (2014). This list is far from being exhaustive and does not mention the

growing literature on estimating dynamic games.

Our paper contributes to this literature in several aspects. First, we focus on monotone

pure strategy Bayesian Nash equilibria (BNE) throughout to bridge discrete game modeling

with empirical analysis. Monotonicity is a desirable property in many applications for both

theoretical and empirical reasons. For instance, White et al. (2014) show that monotone

strategies are never worse off than non–monotone strategies in a private value auction

1Aradillas-López and Gandhi (2016) study identification and estimation of ordered response games with
independent types.

3



model. On theoretical grounds, Athey (2001) provides seminal results on the existence

of a monotone pure strategy BNE whenever a Bayesian game obeys the Spence–Mirlees

single–crossing restriction. Relying on the powerful notion of contractibility, Reny (2011)

extends Athey’s results and related results by McAdams (2003) to give weaker conditions

ensuring the existence of a monotone pure strategy BNE. Using Reny’s results, we establish

the existence of a monotone pure strategy BNE under a weak monotonicity condition on the

expected payoff in our setting. This condition is satisfied in most models used in the recent

literature. For instance, in empirical IO, it is satisfied when the types are conditionally

independent given payoff shifters. In social interaction games, it is also satisfied with

strategic complement payoffs and positively regression dependent types. Exceptions that

estimate Bayesian games with non–monotone equilibrium include Aradillas-Lopez and

Tamer (2008); Xu (2014). In our analysis, the importance of using monotone pure strategy

BNEs lies in the fact that we can exploit (weak) monotonicity between observed actions

and underlying types to identify nonparametrically the underlying game structure. This

opens up the possibility of bringing some theoretical models such as global games (see e.g.

Carlsson and Van Damme, 1993; Morris and Shin, 1998) and models with social interactions

(see e.g. Galeotti et al., 2010) to nonparametric statistical inference.

Second, we allow players’ private information/types to be correlated. In finance and

macroeconomics applications of global games (e.g. bank runs, currency crises, and bubbles;

see Morris and Shin, 2003), private information are naturally positively correlated. See e.g.

Carlsson and Van Damme (1993); Morris and Shin (1998). In oligopoly entry, correlation

among types allows us to know “whether entry occurs because of unobserved profitability

that is independent of the competition effect” (Berry and Tamer, 2006). In Sociology,

correlation among players’ types is crucial as it represents the homophily phenomenon,

which is the principle that people involved in interactions tend to be similar; see e.g.

McPherson et al. (2001); Easley and Kleinberg (2010). The recognition of homophily in

sociology has a long history: In the writings of Plato, for example, “similarity begets

friendship” in his Phaedrus (360 BC). The homophily principle leads to friendship between

people with similar demographics (age, race, education, etc) and with positively correlated

types (taste, attitudes, etc). The former can be directly observed from the data and has been
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well documented in empirical sociology. Identifying the latter is more challenging as it

is unobserved to the researcher. It is worth pointing out that peer effects and homophily

provide two complementary explanations for the common observation that friends tend to

behave similarly.2 Both of them can be separately identified in our framework.

In contrast, mutual independence of private information has been widely assumed in the

empirical game literature. See, e.g., Brock and Durlauf (2001); Pesendorfer and Schmidt-

Dengler (2003); Seim (2006); Aguirregabiria and Mira (2007); Sweeting (2009); Bajari et al.

(2010); Tang (2010); de Paula and Tang (2012); Lewbel and Tang (2015). To our knowledge,

the only exceptions are Aradillas-Lopez (2010), Wan and Xu (2014) and Xu (2014). Such an

independence of types is a convenient assumption, but imposes strong restrictions such

as the mutual independence of players’ choices given covariates, a property that is often

invalidated by the data.3 On the other hand, when private information is correlated, the

BNE solution concept requires that each player’s beliefs about rivals’ choices depend on

her private information, thereby invalidating the usual two–step identification argument

and estimation procedure, see, e.g., Bajari et al. (2010). With such type–dependent beliefs,

Wan and Xu (2014) establish some upper/lower bounds for the beliefs in a semiparametric

setting with linear–index payoffs. Alternatively, Aradillas-Lopez (2010) adopts a different

equilibrium concept related to Aumann (1987), in which each player’s equilibrium beliefs

do not rely on her private information, but on her actual action.

Third, our analysis is fully nonparametric in the sense that players’ payoffs and the joint

distribution of players’ private information are subject to some mild smoothness conditions

only. As far as we know, with the exception of Lewbel and Tang (2015), every paper

analyzing empirical discrete games has imposed parametric restrictions on the payoffs

and/or the distribution of private information. For instance, Brock and Durlauf (2001);

Seim (2006); Sweeting (2009) and Xu (2014) specify both payoffs and the private information

distribution parametrically. In a semiparametric context, Aradillas-Lopez (2010); Tang (2010)

and Wan and Xu (2014) parameterize players’ payoffs, while Bajari et al. (2010) parameterize

2In a linear social interaction model, Manski (1993) denotes them as endogenous effects and correlated effects,
respectively.
3A model with unobserved heterogeneity and independent private information also generates dependence
among players’ choices conditional on covariates (see e.g. Aguirregabiria and Mira, 2007; Grieco, 2014). See
also Section 5.4.

5



the distribution of private information. Instead, Lewbel and Tang (2015) do not introduce

any parameter but impose multiplicative separability in the strategic effect and assume

that it is a known function (e.g. sum) of the other players’ choices. Our nonparametric

baseline discrete game model relaxes such restrictions. We show that such a model imposes

essentially no restrictions on the distribution of players’ choices. In other words, monotone

pure strategy BNEs can explain almost all observed choice probabilities in discrete games.

In view of the preceding result, we consider the identification power and model restric-

tions associated with two assumptions that are frequently made in the empirical analysis

of discrete games. First, we consider the exogeneity of variables shifting players’ payoffs

relative to players’ private information, an assumption that has been frequently imposed

in recent empirical work, e.g., Brock and Durlauf (2001); Seim (2006); Sweeting (2009);

Aradillas-Lopez (2010); Bajari et al. (2010); de Paula and Tang (2012) and Lewbel and Tang

(2015). We show that the resulting model restricts the distribution of players’ choices con-

ditional upon payoff shifters and we characterize all those restrictions. Specifically, the

exogeneity assumption restricts the joint choice probability to be a monotone function of

the corresponding marginal choice probabilities. Given the exogeneity assumption, we

show that one can identify the copula function of the types’ distribution on an appropriate

support. We also show that the equilibrium belief of the player at the margin under a

mild support condition. We then characterize the partially identified set of payoffs and

the distribution of private information under the exogeneity assumption and the support

condition. The partially identified region is unbounded and quite large unless one imposes

additional restrictions on the payoffs’ functional form.

To achieve point identification, we consider some exclusion restrictions and rank condi-

tions. We show that the players’ payoffs are identified up to scale for each fixed value of the

exogenous state variables, as well as up to the marginal distributions of players’ private in-

formation. Moreover, with a single location–scale normalization on the payoff function, we

show that both the players’ payoffs and distribution of types are fully identified. Our model

can be viewed as an extension to a game theoretic setting of traditional threshold–crossing

models considered by, e.g., Matzkin (1992). An important difference is that the game setting

allows us to exploit exclusion restrictions to achieve nonparametric identification of the
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distribution of errors. Such restrictions are frequently used in the empirical analysis of

discrete games. See, e.g., Aradillas-Lopez (2010); Bajari et al. (2010); Lewbel and Tang (2015)

and Wan and Xu (2014).

For completeness, we consider a second assumption, namely the mutual independence

of players’ private information given payoff shifters. Specifically, we characterize all the

restrictions imposed by exogeneity and mutual independence as considered in the empirical

game literature. We show that all the restrictions under this pair of assumptions reduce to

the conditional independence of players’ choices given the payoff shifters. In particular,

the restrictions imposed by mutual independence are stronger than those imposed by the

exogeneity of payoff shifters and the monotonicity of equilibrium. In other words, any of

the latter becomes redundant in explaining players’ choices as soon as mutual independence

and a single equilibrium are imposed.

The paper is organized as follows. We introduce our baseline model in Section 2. We

define and establish the existence of a monotone pure strategy BNE. In Section 3, we study

the restrictions imposed by the baseline model. We also derive all the restrictions imposed

by the exogeneity and mutual independence assumptions. In Section 4, we establish the

nonparametric identification of the model primitives under some support condition, exclu-

sion restrictions and rank conditions. In Section 5, we study the partial identification of the

payoffs without exclusion restrictions. We also discuss three related issues: nonparametric

estimation, multiple equilibria in the DGP, and unobserved heterogeneity. Section 6 con-

cludes with a brief discussion on testing the model restrictions. An Appendix collects the

proofs of our main results. The Appendix also presents a full-fledged example of a binary

game with correlated types which we use for verifying the assumptions of the paper from

primitive assumptions as well as for illustrating our identification results.

2. MODEL AND MONOTONE PURE STRATEGY BNE

We consider a discrete game of incomplete information. There is a finite number of

players, indexed by i = 1, 2, · · · , I. Each player simultaneously chooses a binary action

Yi ∈ {0, 1}. Let Y = (Y1, · · · , YI) be an action profile and A = {0, 1}I be the space of action

profiles. Following standard convention, let Y−i and A−i denote an action profile of all
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players except i and the corresponding action profile space, respectively. Let X ∈ SX ⊂ Rd

be a vector of payoff relevant variables, which are publicly observed by all players and also

by the researcher.4 For instance, X can include individual characteristics of the players as

well as specific variables for the game environment. For each player i, we further assume

that the error term Ui ∈ R is her private information, i.e., Ui is observed only by player i,

but not by other players. To be consistent with the game theoretic literature, we also call Ui

the player i’s “type” (see, e.g., Fudenberg and Tirole, 1991). Let U = (U1, · · · , UI) and FU|X

be the conditional distribution function of U given X. The conditional distribution FU|X is

assumed to be common knowledge.

The payoff of player i is described as follows:

Πi(Y, X, Ui) =

 πi(Y−i, X)−Ui, if Yi = 1,

0, if Yi = 0,

where πi is a structural function of interest. The zero payoff for action Yi = 0 is a standard

payoff normalization in binary response models.5

Following the literature on Bayesian games, given the public state variable X, player i’s

decision rule is a function of her type:

Yi = δi(X, Ui),

where δi : Rd ×R→ {0, 1}maps all the information she knows to a binary decision. For

any given strategy profile δ = (δ1, · · · , δI), let σδ
−i(a−i|x, ui) be the conditional probability

of other players choosing a−i ∈ A−i given X = x and Ui = ui, i.e.,

σδ
−i(a−i|x, ui) ≡ Pδ (Y−i = a−i|X = x, Ui = ui) = P

[
δj(X, Uj) = aj, ∀j 6= i|X = x, Ui = ui

]
,

4See Section 5.4 on unobserved heterogeneity when this is not the case. See also Grieco (2014) who analyzes a
discrete game that has some payoff relevant variables publicly observed by all players, but not by the researcher.
5Here we understand “normalization” from the view of observational equivalence: Suppose the payoffs take
the general form:

Πi(Y, X, U∗i0, U∗i1) =
{

π∗i1(Y−i, X)−U∗i1, if Yi = 1;
π∗i0(Y−i, X)−U∗i0, if Yi = 0,

where for y = 0, 1, U∗iy and π∗iy are action–specific error terms and payoff functions, respectively. It can be
shown that this model with our subsequent assumptions is observationally equivalent to the above game with
payoff πi(Y−i, X) = π∗i1(Y−i, X)− π∗i0(Y−i, X) and Ui = U∗i1 −U∗i0. See also Liu et al. (2012) when Πi(Y, X, Ui)
is nonseparable in Ui ∈ R.
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where Pδ represents the (conditional) probability measure under the strategy profile δ. The

equilibrium concept we adopt is the pure strategy Bayesian Nash equilibrium (BNE). Mixed

strategy equilibria are not considered in this paper, since a pure strategy BNE generally

exists under weak conditions in our model.

We now characterize the equilibrium solution in the above discrete game. Fix X = x ∈

SX. In equilibrium, player i with Ui = ui chooses action 1 if and only if her expected payoff

is greater than zero, i.e.,

δ∗i (x, ui) = 1

[
∑
a−i

πi(a−i, x)× σ∗−i(a−i|x, ui)− ui ≥ 0

]
, ∀ i, (1)

where δ∗ ≡ (δ∗1 , · · · , δ∗I ), as a profile of functions of u1, · · · , uI respectively, denotes the

equilibrium strategy profile and σ∗−i(a−i|x, ui) is a shorthand notation for σδ∗
−i(a−i|x, ui).

Note that σ∗−i depends on δ∗−i. Hence, (1) for i = 1, · · · , I defines a simultaneous equation

system in δ∗, referred as “mutual consistency” of players’ optimal behaviors. A pure

strategy BNE is a fixed point δ∗ of such a system, which holds for all u = (u1, . . . , uI) in the

support SU|X=x. Ensuring equilibrium existence in Bayesian games is a complex and deep

subject in the literature. It is well known that a solution of such an equilibrium generally

exists in a broad class of Bayesian games (see, e.g., Vives, 1990).

The key to our approach is to employ a particular equilibrium solution concept of

BNE — monotone pure strategy BNEs, which exist under additional weak conditions.

Recently, much attention has focused on monotone pure strategy BNEs. The reason is that

monotonicity is a natural property and has proven to be powerful in many applications

such as auctions, entry, and global games. In our setting, a monotone pure strategy BNE is

defined as follows:

Definition 1. Fix x ∈ SX. A pure strategy profile (δ∗1 (x, ·), · · · , δ∗I (x, ·)) is a monotone pure

strategy BNE if (δ∗1 (x, ·), · · · , δ∗I (x, ·)) is a BNE and δ∗i (x, ui) is (weakly) monotone in ui for all i.

Monotone pure strategy BNEs are relatively easier to characterize than ordinary BNEs.

Fix X = x. In our setting, a monotone pure strategy (m.p.s.) can be explicitly defined as a

threshold function (recall that δ∗i can take only binary values). Formally, in an m.p.s. BNE,
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player i’s equilibrium strategy can be written as δ∗i = 1 [ui ≤ u∗i (x)],6 where u∗i (x) is the

cutoff value that might depend on x. Let u∗(x) ≡ (u∗1(x), · · · , u∗I (x)) ∈ RI be the profile of

equilibrium strategy thresholds.

In an m.p.s. BNE, the mutual consistency condition for a BNE solution defined by (1)

requires that for each player i,

ui ≤ u∗i (x)⇐⇒∑
a−i

πi(a−i, x)× σ∗−i(a−i|x, ui)− ui ≥ 0. (2)

A simple but key observation is that under certain weak conditions introduced later, (2)

implies that player i with the marginal type u∗i (x) should be indifferent between action 1

and 0, i.e.

∑a−i
πi(a−i, x)× σ∗−i(a−i|x, u∗i (x))− u∗i (x) = 0. (3)

Therefore, the equilibrium strategy can be represented by

Yi = 1
[
Ui ≤∑

a−i

πi(a−i, X)× σ∗−i(a−i|X, u∗i (X))
]
. (4)

The seminal work on the existence of an m.p.s. BNE in games of incomplete information

was first provided by Athey (2001) in both supermodular and logsupermodular games, and

later extended by McAdams (2003) and Reny (2011). Applying Reny (2011) Theorem 4.1,

we establish the existence of m.p.s. BNEs in our binary game under some weak regularity

assumptions.

Assumption R (Conditional Radon–Nikodym Density). For every x ∈ SX, the conditional

distribution of U given X = x is absolutely continuous w.r.t. Lebesgue measure and has a continuous

and positive conditional Radon–Nikodym density fU|X(·|x) a.e. over the nonempty interior of its

hypercube support SU|X=x.

Assumption R allows the support of U conditional on X = x to be bounded, namely of

the form ×i=1,...,I [ui(x), ui(x)] for some finite endpoints ui(x) and ui(x) as frequently used

when Ui is i’s private information, or unbounded such as when SU|X=x = RI in binary

6The left–continuity of strategies considered hereafter is not restrictive given our assumptions below. Note that
the payoff function is decreasing in ui, hence the m.p.s. is also (weakly) decreasing. To simplify, throughout we
use “weakly/strictly monotone” to refer to “weakly/strictly decreasing”.
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response models. As a matter of fact, assumption R can be greatly weakened as shown by

Reny (2011) (see Appendix B.2 for more details).

For any strategy profile δ, let Eδ denote the (conditional) expectation under the strategy

profile δ. Without causing any confusion, we will suppress the subscript δ∗ in Eδ∗ (or Pδ∗)

when the expectation (or probability) is taken under the equilibrium strategy profile.

Assumption M (Monotone Expected Payoff). For any weakly m.p.s. profile δ and x ∈ SX, the

(conditional) expected payoff Eδ

[
πi(Y−i, X)

∣∣X = x, Ui = ui
]
− ui is a weakly monotone function

in ui ∈ SUi |X=x.

Assumption M guarantees that each player’s best response is also weakly monotone in type

given that all other players adopt weakly m.p.s.. In particular, in a two–player game (i.e.,

I = 2), assumption M is equivalent to the following condition: for any x ∈ SX and u−i ∈ R,

the function [πi(1, x)− πi(0, x)]×P(U−i ≤ u−i|X = x, Ui = ui)− ui is weakly monotone

in ui.

Note that for the existence of m.p.s. BNEs, assumption M is sufficient but not necessary

in many cases. It should also be noted that assumption M holds trivially if all Uis are

conditionally independent of each other given X. Lemma 6 in Appendix A.2 also provides

primitive sufficient conditions for assumption M. Specifically, we assume positive regression

dependence across Uis given X and strategic complementarity of players’ actions, which

are natural restrictions in models with social interactions.

Lemma 1. Suppose assumptions R and M hold. For any x ∈ SX, there exists an m.p.s. BNE. In

particular, player i’s equilibrium strategy can be written as in (4).

By Lemma 1, m.p.s. BNEs generally exist in a large class of binary games. As far as

we know, with the only exception of Aradillas-Lopez and Tamer (2008) and Xu (2014),

every paper analyzing empirical discrete games of incomplete information so far has

imposed certain restrictions (i.e. sufficient conditions for assumption M) to guarantee that

equilibrium strategies be threshold–crossing.

Monotone pure strategy BNEs are convenient and powerful for empirical analysis. In

particular, we can represent each player’s equilibrium strategy by a semi–linear–index
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binary response model (4). Such a representation relates to single-agent binary threshold

crossing models studied by e.g. Matzkin (1992), where the ‘coefficients’ are the player’s

equilibrium belief about the other players’ actions given the threshold signal u∗i (x). Note,

however, that we do not restrict either πi(a−i, X) or FU|X to have a specific functional

form. Nevertheless, in Section 4.2 we will show that the equilibrium beliefs σ∗−i in (4) are

nonparametrically identified under additional weak conditions.

Though non–monotone strategy BNEs are seldom considered in the literature, it is worth

pointing out that this kind of equilibria could exist and sometimes even stands as the only

type of equilibria. This could happen when some player is quite sensitive to others’ choices

and types are highly correlated. We provide a simple example to illustrate.7

Example 1. Let I = 2 and πi = Xi − βiY−i −Ui, where (U1, U2) conforms to a joint normal

distribution with mean zero, unit variances and correlation parameter ρ ∈ (−1, 1).8

Case 1: Suppose (X1, X2) = (1, 0) and (β1, β2) = (2, 0). Then, regardless of the value of ρ,

there is always a unique pure strategy BNE: Clearly, player 2 has a dominant strategy which is

monotone in u2: choosing 1 if and only if u2 ≤ 0. Thus, player 1’s best response must be: choosing 1

if and only if 1− 2Φ
(
− ρu1√

1−ρ2

)
− u1 ≥ 0. Further, it can be shown that player 1’s equilibrium

strategy is not monotone in u1 if and only if ρ ∈
(√

π
2+π , 1).

Case 2: Suppose (X1, X2) = (1, 1) and (β1, β2) = (2, 2). First, note that the m.p.s. profile

{1(u1 ≤ 0); 1(u2 ≤ 0)} is a BNE as long as ρ ∈
(
− 1,

√
π

2+π

]
. Moreover, it can be verified that

this equilibrium is the unique BNE if and only if ρ ∈
(
− 1, π−2

2+π

]
. When ρ ∈

(
π−2
2+π , 1

)
, we can find

two other equilibria of the game: {1(u1 ≤ u∗); 1(u2 ≤ −u∗)} and {1(u1 ≤ −u∗); 1(u2 ≤ u∗)}

where u∗ > 0 solves 1− 2Φ(
√

1+ρ
1−ρ · u∗) + u∗ = 0.

In Case 1, the non–monotone strategy BNE occurs due to the large positive correlation

between U1 and U2 (relative to β1), which violates assumption M. On the other hand, for

any given value of the structural parameters, the existence of a non–monotone strategy

BNE could also depend on the realization of (X1, X2).

7We thank Steven Stern and Elie Tamer for their comments and suggestions on the following example.
8In a similar fully parametric setting, Xu (2014) proposes an inference approach based on first identifying a
subset of the covariate space where the game admits a unique m.p.s. BNE.
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3. RATIONALIZATION

In this section, we study the baseline model defined by assumptions R and M as well as

two other models obtained by imposing additional assumptions frequently made in the

empirical game literature. Specifically, we characterize all the restrictions imposed on the

distribution of observables (Y, X) by each of these models.

We say that a conditional distribution FY|X is rationalized by a model if and only if it

satisfies all the restrictions of the model. Equivalently, FY|X is rationalized by the model if

and only if there is a structure (not necessarily unique) in the model that generates such

a distribution. In particular, rationalization logically precedes identification as the latter,

which is addressed in Section 4, makes sense only if the observed distribution can be

rationalized by the model under consideration.

An assumption frequently made in the literature, e.g., Brock and Durlauf (2001) and

Bajari et al. (2010), is the exogeneity of the observed state variables X relative to private

information U.

Assumption E (Exogeneity). X and U are independent of each other.9

Another assumption called as mutual independence has been also widely used in the

literature. For examples, see an extensive list of references in two recent surveys: Bajari

et al. (2010) and de Paula (2013). Such an independence of types is a convenient theoretical

assumption, which means player i’s private information is uninformative about other

players’ types given X.

Assumption I (Mutual Independence). U1, · · · , UI are mutually independent conditional on X.

Let S ≡ [π; FU|X], where π = (π1, · · · , πI). We now consider the following models:

M1 ≡
{

S : Assumptions R and M hold and a single m.p.s. BNE is played
}

,

M2 ≡ {S ∈ M1 : Assumption E holds} ,

M3 ≡ {S ∈ M2 : Assumption I holds} .

9Our results can be easily extended to the weaker assumption that X and U are independent from each other
conditional on W, where W are other observed payoff relevant variables.
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Clearly,M1 )M2 )M3.

The last requirement inM1 is not restrictive when the game has a unique equilibrium

which has to be an m.p.s. BNE under assumptions R and M. In the global game literature,

for example, uniqueness of m.p.s. BNE is achieved as the information noise gets small. See

e.g. Carlsson and Van Damme (1993) and Morris and Shin (1998). In social interactions,

uniqueness of m.p.s. BNE has also been established in e.g. Brock and Durlauf (2001) and Xu

(ming). When there exist multiple equilibria, we follow part of the literature by assuming

that the same equilibrium is played in the DGP for any given x. See e.g. Aguirregabiria and

Nevo (2013) for a survey. Such an assumption is realistic if the equilibrium selection rule is

actually governed by some game invariant factors, like culture, social norm, etc. See, e.g.,

de Paula (2013) for a detailed discussion. Relaxing such a requirement has been addressed

in recent work and will be discussed in Section 5.3.

We introduce some key notation for the following analysis. For any structure S ∈ M1,

let αi(x) ≡ FUi |X(u
∗
i (x)|x). By monotonicity of the equilibrium strategy, we have αi(x) =

E(Yi|X = x), i.e. αi(x) is player i’s (marginal) probability of choosing action 1 given

X = x. Moreover, for each p = 2, · · · , I, and 1 ≤ i1 < · · · < ip ≤ I, let CUi1 ,··· ,Uip |X be the

conditional copula function of (Ui1 , · · · , Uip) given X, i.e., for any (αi1 , · · · , αip) ∈ [0, 1]p

and x ∈ SX,

CUi1 ,··· ,Uip |X(αi1 , · · · , αip |x) ≡ FUi1 ,··· ,Uip |X

(
F−1

Ui1 |X
(αi1 |x), · · · , F−1

Uip |X
(αip |x)

∣∣∣x) .

The next proposition characterizes the collection of distributions of Y given X that can be

rationalized byM1.

Proposition 1. A conditional distribution FY|X is rationalized byM1 if and only if for all x ∈ SX

and a ∈ A, P(Y = a|X = x) = 0 implies that P(Yi = ai|X = x) = 0 for some i.

By Proposition 1, M1 rationalizes all distributions of Y given X that belong to the

interior of the 2I − 1 dimensional simplex, i.e. distributions with strictly positive choice

probabilities, since the condition in Proposition 1 is void for such distributions. Specifically,

the distributions that cannot be rationalized byM1 must have P(Y = a|X = x) = 0 for

some a ∈ A, i.e., distributions for which there are “structural zeros.” In other words, our
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baseline modelM1 imposes no essential restrictions on the distribution of observables. The

distributions that cannot be rationalized byM1 arise because of assumption R. As noted

earlier, one can replace assumption R by Reny (2011)’s weaker conditions, in which case

any distribution for Y given X can be rationalized. See Lemma 7 in Appendix B.2.

We now characterize all the restrictions imposed on FY|X by modelM2. These additional

restrictions come from assumption E.

Proposition 2. A conditional distribution FY|X rationalized byM1 is also rationalized byM2 if

and only if for each p = 2, · · · , I and 1 ≤ i1 < · · · < ip ≤ I,

R1: E
(

∏
p
j=1 Yij

∣∣X) = E
(

∏
p
j=1 Yij

∣∣αi1(X), · · · , αip(X)
)
.

R2: E
(

∏
p
j=1 Yij |αi1(X) = ·, · · · , αip(X) = ·

)
is strictly increasing on Sαi1 (X),··· ,αip (X) except

at values for which some coordinates are zero.

R3: E
(

∏
p
j=1 Yij |αi1(X) = ·, · · · , αip(X) = ·

)
is continuously differentiable on Sαi1 (X),··· ,αip (X).

In Proposition 2, the most stringent restriction is R1, which requires that the joint choice

probability depend on X only through the corresponding marginal choice probabilities.

Under restrictions R1 and R2, the condition α(x) ≥ α(x′) implies that P(Yi1 = 1, · · · , Yip =

1|X = x) ≥ P(Yi1 = 1, · · · , Yip = 1|X = x′) for all tuples {i1, · · · , ip}. Moreover, note that

αi(x) is identified by αi(x) = E(Yi|X = x). Therefore, all the restrictions R1–R3 are testable

in principle.10 This is discussed further in the Conclusion.

For completeness, we also study the restrictions on observables imposed byM3, which

makes the additional assumption I. It should be noted that assumption M is satisfied when

assumption I holds. In other words,

M3 = {S : Assumptions R, E, I hold and a single m.p.s. BNE is played}.

In the literature, several special cases ofM3 have been considered under some parametric

assumptions, see, e.g., Bajari et al. (2010).

10 If X is discrete, then R3 becomes irrelevant.
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Proposition 3. A conditional distribution FY|X can be rationalized byM3 if and only if Y1, · · · , YI

are conditionally independent given X, i.e. for each p = 2, · · · , I and 1 ≤ i1 < · · · < ip ≤ I,

E
(

∏
p
j=1 Yij |X

)
= ∏

p
j=1 αij(X).

It is worth pointing out that Propositions 1 to 3 exhaust all possible testable restrictions as

they provide necessary and sufficient conditions for rationalizingM1,M2 andM3, respec-

tively. Moreover, their proofs are constructive. Specifically, we construct an I–single–agent

decision structure that rationalizes the given distributions satisfying the corresponding

restrictions. This is summarized by the following corollary. For k = 1, 2, 3, let

Ms
k = {S ∈ Mk : πi(a′−i, x) = πi(a−i, x), ∀a′−i, a−i ∈ A−i, x ∈ SX and i = 1, · · · , I}.

Corollary 1. For k = 1, 2, 3,Mk is observationally equivalent toMs
k.

Hence, it is evident that without additional model restrictions beyond the assumptions

of M1 M2, or M3, a discrete Bayesian game model with strict interactions cannot be

empirically distinguished from an alternative model with I–single–agent decisions. In

contrast, with exclusion restrictions, Section 4 shows that these two classes of models can

be distinguished from each other.

It should also be noted that the conditional independence restriction in Proposition 3

implies conditions R1–R3 in Proposition 2, as well as the necessary and sufficient condition

in Proposition 1. The conditional independence of players’ choices given payoffs shifters

characterizingM3 suggests that we can replaceM3 in Proposition 3 with

M′
3 ≡ {S : Assumption I holds and a single BNE is played},

sinceM′
3 also implies the conditional independence restriction. In particular,M′

3 does not

require the monotonicity of the BNE. BecauseM3 ⊂M′
3, we have the following corollary.

Corollary 2. ModelM3 imposes the same restrictions on the distribution of observables asM′
3,

i.e., both models are observationally equivalent.

This is a surprising result: Assumptions R, M and more importantly exogeneity of the

payoff shifters (assumption E) become redundant in terms of restrictions on the observables,
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as soon as mutual independence of types conditional on X (assumption I) and a single

BNE condition are imposed on the baseline model. Moreover, if we are willing to maintain

assumption I, then Proposition 3 and Corollary 2 gives us a test of a single equilibrium being

played, as rejecting the conditional independence of the players’ choices given X indicates

the presence of multiple equilibria. This extends a related result in terms of correlation

obtained by de Paula and Tang (2012) in a partial–linear setting.

4. NONPARAMETRIC IDENTIFICATION

In this section we study the nonparametric identification of the baseline model M1,

and its special casesM2 andM3. The recent literature has focused on the parametric or

semiparametric identification of structures inM3, see, e.g., Brock and Durlauf (2001); Seim

(2006); Sweeting (2009); Bajari et al. (2010), and Tang (2010). As far as we know, Lewbel and

Tang (2015) is the only paper that studies the nonparametric identification of a submodel of

M3 obtained through additional restrictions on the functional form of payoffs.

In our context, identification of each model is equivalent to identification of the payoffs

πi, the marginal distribution function FUi |X and the copula function CU|X of players’ types.

Let QUi |X be the quantile function of FUi |X. Because the quantile function is the inverse of

the CDF, i.e. QUi |X = F−1
Ui |X

, identification reduces to that of the triple
[
π; {QUi |X}

I
i=1; CU|X

]
.

In contrast to single-agent binary threshold crossing models, we do not require any of such

primitives to be parameterized.

We first show thatM1 is not identified in general. ForM2, we first establish the iden-

tification of CU|X and the equilibrium beliefs σ∗−i(·|x, u∗i (x)) under an additional support

condition. The identification of the copula function CU|X is of particular interest in social

interactions, since it represents (unobserved) homophily among friends. Under some ex-

clusion restrictions and rank conditions, we then establish the identification of the payoff

functions π and the quantile functions {QUi |X}
I
i=1 up to a single location–and–scale normal-

ization on the payoffs. RegardingM3, its identification requires slightly weaker support

restrictions than those forM2, though the differences are not essential.

4.1. Nonidentification ofM1. We begin with the most general modelM1.

Proposition 4. M1 is not identified nonparametrically.
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The proof is trivial. It follows directly from the observational equivalence between any

structure S in M1 and a collection of I–single-agent binary responses models: Let S̃ ≡(
π̃; F̃U|X

)
, in which π̃i(·, x) ≡ ũi(x), where ũi(x) is arbitrarily chosen, and F̃U|X satisfies

assumption R with F̃Ui1 ,··· ,Uip |X(ũi1(x), · · · , ũip(x)|x) = FUi1 ,··· ,Uip |X(u
∗
i1(x), · · · , u∗ip

(x)|x) for

all x ∈ SX and all tuples {i1, · · · , ip}. Thus, S̃ and S are observationally equivalent thereby

establishing the non–identification ofM1.11

Next, we turn to the identification of M2 and its sub–model M3. First note that we

maintain assumption E in both models, i.e. that X and U are independent of each other;

See Footnote 9 for a weaker assumption. It follows that QUi |X = QUi and CU|X = CU . Thus,

identification of these models reduces to that of the triple
[
π; {QUi}I

i=1; CU
]
.

4.2. Identification ofM2. Let α(x) ≡ (α1(x), · · · , αI(x)) be a profile of the marginal choice

probabilities. Note that αi(x) is identified by E(Yi|X = x). Under assumption E, the

copula function CU is nonparametrically identified on an appropriate domain, namely, the

extended support of α(X) defined as S e
α(X) ≡ {α : αj = 0 for some j}⋃ {α : (αi1 , · · · , αip) ∈

Sαi1 (X),··· ,αip (X); other αij = 1
}

. We have CU(α) = 0 if αj = 0 for some j; otherwise,12

CU(α) = P
{

U1 ≤ QU1(α1), · · · , UI ≤ QUI (αI)
}

= P
[
Uj ≤ QUj(αj), ∀j ∈ {i : αi 6= 1}

]
= E

[ I

∏
i=1

Yi
∣∣αj(X) = αj, ∀j ∈ {i : αi 6= 1}

]
. (5)

Key among those conditions for the nonparametric identification of CU is the assumption

that a single m.p.s. BNE is played in the DGP. Such a restriction implies that conditional on

αj(X) = αj, the event Uj ≤ QUj(αj) is equivalent to Yj = 1.

As mentioned above, the equilibrium belief σ∗−i(·|x, u∗i (x)) can also be nonparametrically

identified, for which we need a support condition on α(X).

Assumption SC (Support Condition). The support Sα(X) is the closure of a nonempty open set.

11Even if one imposes the identifying restrictions (namely the exclusion restriction, support condition and rank
condition) introduced later,M1 is still not identified by a similar argument.
12In (5), it is understood that CU(α) = 1 if α = (1, · · · , 1).
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Assumption SC implies that the dimension of the interior S ◦
α(X) of Sα(X) is I. Therefore, we

can take derivatives in all directions of an arbitrary smooth function defined on S ◦
α(X).

13

Moreover, given the identification of α(x), assumption SC is verifiable. It is worth pointing

out that Assumption SC does not necessarily require the dimension of X to be larger than

or equal to the number of players.

Lemma 2. Let S ∈ M2. Suppose assumption SC holds. Fix x ∈ SX. Then the equilibrium beliefs

σ∗−i(·|x, u∗i (x)) are identified. Namely, for all a−i ∈ A−i,

σ∗−i(a−i|x, u∗i (x)) =
∂P (Yi = 1; Y−i = a−i|α(X) = α)

∂αi

∣∣∣∣∣
α=α(x)

. (6)

Note that, under assumption I, the probability P (Yi = 1; Y−i = a−i|α(X)) = αi(X) ×

∏j 6=i α
aj
j (X)[1 − αj(X)]1−aj becomes a (known) linear function in αi(X). Thus, we have

σ∗−i(a−i|x, u∗i (x)) = ∏j 6=i α
aj
j (X)[1− αj(X)]1−aj , thereby identifying trivially the equilibrium

beliefs without assumption SC, see, e.g., Bajari et al. (2010).

To illustrate the intuition of Lemma 2, we use a two–player game.

Example 2. Let S ∈ M2 and I = 2. Note that for any α ∈ [0, 1]2, we have

P(Y1 = 1, Y2 = 1|α(X) = α) = P [U1 ≤ QU1(α1), U2 ≤ QU2(α2)] = CU(α1, α2),

where the first equality follows from αi(X) = αi being equivalent to u∗i (X) = QUi(αi) from the

independence of U and X. Further, we have

∂CU(α1, α2)

∂αi
= P

(
U−i ≤ QU−i(α−i)|Ui = QUi(αi)

)
, (7)

see, e.g., Darsow et al. (1992). Because QUi(αi(x)) = u∗i (x), it follows that

∂P(Y1 = 1, Y2 = 1|α(X) = α)

∂αi

∣∣∣
α=α(x)

= P
(
U−i ≤ u∗−i(x)|Ui = u∗i (x)

)
= P (Y−i = 1|X = x, Ui = u∗i (x)) = σ∗−i(1|x, u∗i (x)).

13As a matter of fact, for the boundary points, we can take directional derivatives as well.
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Similarly, we have

∂P(Yi = 1, Y−i = 0|α(X) = α)

∂αi

∣∣∣
α=α(x)

= σ∗−i(0|x, u∗i (x)).

Equation (7) is related to the treatment effect literature, e.g., Heckman and Vytlacil (1999,

2005), Carneiro and Lee (2009) and Jun et al. (2011). Taking derivative with respect to

the propensity score identifies the conditional quantile (or conditional expectation) of the

treatment effect at the margin. Lemma 2 extends this result to the multivariate case by using

the law of iterated expectation.

We now discuss the identification of π and QUi . Fix X = x such that αi(x) ∈ (0, 1).

Because u∗i (x) = QUi(αi(x)), we represent the equilibrium condition (3) by

∑
a−i∈A−i

πi(a−i, x)× σ∗−i(a−i|x, u∗i (x))−QUi(αi(x)) = 0, (8)

where σ∗−i is known by Lemma 2. Next, we will exploit (8) for the identification of the

payoffs πi. The idea is to vary σ∗−i(·|x, u∗i (x)) while keeping πi(·, x) fixed, for which we

need the following exclusion restriction.

Assumption ER (Exclusion Restriction). Let X = (X1, · · · , XI). For all i, a−i and x, we have

πi(a−i, x) = πi(a−i, xi).14

In the context of discrete games, the identification power of exclusion restrictions was first

demonstrated in Pesendorfer and Schmidt-Dengler (2003), Tamer (2003), and was used by

Bajari et al. (2010) in a semiparametric setting. For instance, in empirical IO, some cost

shifters are included in the payoff of firm i but not in firm j’s, and vice versa.

Under assumption ER, (8) implies that

∑
a−i∈A−i

πi(a−i, xi)
{

σ∗−i(a−i|x, u∗i (x))−E
[
σ∗−i
(
a−i|X, u∗i (X)

)
|Xi = xi, αi(X) = αi(x)

] }
= 0.

(9)

For notational simplicity, we denote the random vector σ∗−i (·|X, u∗i (X)) as Σ∗−i(X), a column

vector of dimension 2I−1. Let Σ∗−i(X) ≡ Σ∗−i(X) − E
[
Σ∗−i(X)|Xi, αi(X)

]
and Ri(xi) =

14As a matter of fact, Xis can have some common variables due to homophily. In this case, our results hold by
conditioning on those common variables.
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E
[
Σ∗−i(X)Σ∗−i(X)>

∣∣Xi = xi

]
. Given Lemma 2, we treat Σ∗−i(X) and Σ∗−i(X) as observables

hereafter. Note that ι′Σ∗−i(X) = 1 a.s., where ι ≡ (1, · · · , 1)′ ∈ R2I−1
. It follows that

ι′Σ∗−i(X) = 0. Thus, Σ∗−i(X) consists of a vector of linearly dependent variables. Indeed,

the largest possible rank of the matrixRi(xi) is 2I−1 − 1. In the next proposition, we give

identification results for features ofM2.

Lemma 3. Suppose S ∈ M2 and assumptions SC and ER hold. Fix xi ∈ SXi such that

Sαi(X)|Xi=xi

⋂
(0, 1) 6= ∅. If the rank of Ri(xi) is 2I−1 − 1, then Sαi(X)|Xi=xi

must be a sin-

gleton {α†
i } and πi(·, xi) is identified up to the α†

i –quantile of FUi , i.e. πi(·, xi) = QUi(α
†
i ). If the

rank ofRi(xi) is 2I−1 − 2, then πi(·, xi) is identified up to location and scale that depend on xi, or

equivalently, πi(·, xi)− πi(a0
−i, xi) is identified up to scale for arbitrary a0

−i ∈ A−i.

Lemma 3 shows that fixing xi, the payoff function πi(·, xi) is identified as a constant, or

identified up to location and scale, where the scale could be either positive or negative. In

particular, if Ri(xi) has the largest rank 2I−1 − 1, there are no strategic effects. Thus, one

can test the lack of strategic interactions by testing such a rank condition.

For example, let I = 3. Fix Xi = xi. Then, (9) contains four unknown coefficients

πi((0, 0), xi), πi((0, 1), xi), πi((1, 0), xi) and πi((1, 1), xi). Note that Σ∗−i(X) ≡ σ∗−i (·|X, u∗i (X))

is a random vector distributed on a simplex of dimension three. In addition, control-

ling for αi(X), E
[
Σ∗−i(X)|Xi, αi(X)

]
is a (random) vector in the same simplex. Thus,

Σ∗−i(X) belongs to the the re-centered simplex, which is obtained by shifting the three–

dimensional simplex to be centered at (0, 0, 0, 0). Because Σ∗−i(X) satisfies (9), then Σ∗−i(X)

is distributed on the intersection of the three–dimensional hyperplane defined by (9) and

the re-centered three–dimensional simplex. The intersection is a two–dimensional trian-

gle unless the hyperplane contains the re-centered simplex. In the former case, the rank

Ri(xi) = E
[
Σ∗−i(X)Σ∗−i(X)>

∣∣Xi = xi

]
≤ 2, while the latter case impliesRi(xi) ≤ 3. Thus,

whenRi(xi) = 3, only the latter case applies. Hence, the coefficients in (9) are determined

proportionally by the re-centered probability–mass simplex: πi((0, 0), xi) = πi((0, 1), xi) =

πi((1, 0), xi) = πi((1, 1), xi), i.e., there are no strategic effects on i.

Under an additional assumption (i.e. assumption V below), we identify the existence

of strategic effects. In addition, we can identify the sign of πi(a−i, xi)− πi(a′−i, xi). When
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players’ private signals are independent, de Paula and Tang (2012) develop a special

approach for nonparametrically identifying the signs of the strategic effects by exploiting the

identification power of multiple equilibria. In contrast, our approach relies on assumptions

E and ER while being applicable when there is only one (m.p.s.) equilibrium.

Assumption V (Variations in Marginal Choice Probabilities). Fix xi ∈ SXi . There exist

α, α′ ∈ Sα(X)|Xi=xi
such that 0 < αi 6= α′i < 1 and (αi, α′−i) ∈ Sα(X).

Proposition 5. Suppose S ∈ M2. Fix xi ∈ SXi . Then πi(·, xi) varies on A−i if Sαi(X)|Xi=xi

is not a singleton. Moreover, suppose assumptions SC, ER and V hold. If the rank of Ri(xi) is

2I−1 − 2, then the sign of πi(a−i, xi)− πi(a0
−i, xi) is identified for each a−i ∈ A−i.

When assumption V holds, the rank condition in Proposition 5 requires that X−i contain

at least one continuous random variable such that, conditional on Xi = xi and αi(X) = αi,

there are sufficient variations in σ∗−i(·|X, u∗i (X)) by varying X−i. Such a rank condition is

related to Pesendorfer and Schmidt-Dengler (2003) and Bajari et al. (2010) under semipara-

metric settings.

To identify the payoffs up to a single location and scale, we introduce a normalization.

Similar to Matzkin (2003), our normalization is imposed on the payoff functions at some

x∗i ∈ SXi .

Assumption N (Payoff Normalization). We set πi
(
a0
−i, x∗i

)
= 0 and ‖πi(·, x∗i )‖ = 1 for some

x∗i ∈ SXi satisfying (i) assumption V and (ii) the rank ofRi(x∗i ) is 2I−1 − 2.15

Let S ∈ M2. Suppose that assumptions SC, ER and N hold. By Lemma 3, the payoffs

πi(·, x∗i ) is point identified. By (8), QUi is identified on the support Sαi(X)|Xi=x∗i

⋂
(0, 1).

Further, for each xi ∈ SXi , suppose that the rank of Ri(xi) equals 2I−1 − 2, and that

Sαi(X)|Xi=xi

⋂
Sαi(X)|Xi=x∗i

⋂
(0, 1) contains two elements αi, α′i ∈ (0, 1). By Lemma 3, πi(·, xi)

is identified up to location and scale. Note that the quantiles QUi(αi) and QUi(α
′
i) are known

since αi, α′i ∈ Sαi(X)|Xi=x∗i

⋂
(0, 1). Therefore, we can determine the location and scale of

15W.l.o.g., we set a0
−i = (0, · · · , 0) ∈ A−i. Note that ‖πi(·, x∗i )− πi(a0

−i, x∗i )‖ 6= 0 because of Assumption V.
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πi(·, xi) from the following two equations

∑
a−i∈A−i

πi(a−i, xi)×E
[
σ∗−i(a−i|X, u∗i (X))|Xi = xi, αi(X) = αi

]
= QUi(αi);

∑
a−i∈A−i

πi(a−i, xi)×E
[
σ∗−i(a−i|X, u∗i (X))|Xi = xi, αi(X) = α′i

]
= QUi(α

′
i).

Moreover, we can identify QUi on the support Sαi(X)|Xi∈{x∗i ,xi}
⋂
(0, 1). Repeating such an

argument, we can show that πi(·, xi) is point identified for all xis in a collection, denoted as

C∞
i , while QUi is identified on the support Sαi(X)|Xi∈C∞

i

⋂
(0, 1).

Definition 2. Let the subset C∞
i in SXi be defined by the following iterative scheme. Let C0

i = {x∗i }.

Then, for all t ≥ 0, Ct+1
i consists of all elements xi ∈ SXi such that at least one of the following

conditions is satisfied: (i) xi ∈ Ct
i ; (ii) Ri(xi) has rank 2I−1 − 2 and there exists an x′i ∈ Ct

i such

that Sαi(X)|Xi=xi

⋂
Sαi(X)|Xi=x′i

⋂
(0, 1) contains at least two different elements; and (iii) Ri(xi)

has rank 2I−1 − 1 and there exists an x′i ∈ Ct
i such that Sαi(X)|Xi=xi

⊆ Sαi(X)|Xi=x′i

⋂
(0, 1).

In view of Lemma 3, condition (ii) in Definition 2 corresponds to the case where there are

strategic effects. This case is the key to effectively expand the collection of xis in an iterative

manner by enlarging Sαi(X)|Xi∈Ct
i

to Sαi(X)|Xi∈Ct+1
i

. Note that to exploit condition (ii), we

implicitly assume that X−i contains at least one continuous random variable.

Proposition 6. Let S ∈ M2. Suppose assumptions SC, ER and N hold. Then πi and QUi are point

identified on the support A−i ×C∞
i and Sαi(X)|Xi∈C∞

i

⋂
(0, 1), respectively.

It is interesting to note that our identification argument does not apply to a nonparametric

single–agent binary response model, see e.g. Matzkin (1992).16 This is because the support

Sαi(X)|Xi=x∗i
is a singleton in a single–agent binary response model, i.e., we are always in the

case of condition (iii) in Definition 2. In contrast, with interactions and exclusion restrictions,

we can exploit variations of X−i while controlling for Xi to identify a set of quantiles of FUi .

Note that {Ct
i : t ≥ 1} is an expanding sequence on the support SXi , which ensures that

the limit C∞
i is well defined (and may not be bounded if SXi is unbounded). The domain

and size of C∞
i depend on the choice of x∗i as well as the variation of Sαi(X)|Xi=xi

across

16In single–agent binary response models, Matzkin (1992) establishes nonparametric identification results
under additional model restrictions (e.g., her assumptions W.2, W.4 and G.2).
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different xis. Regarding the choice of the starting point x∗i , intuitively we should choose it

in a way such that C∞
i is the largest. However, it can be shown that for any x′i satisfying

assumption N, if x′i ∈ C∞
i , then we will end up with the same C∞

i ; otherwise x′i will lead to

a non–overlapping set C∞
i
′.

The next corollary shows that the above iterative mechanism is not necessary if x∗i
provides the largest variations in player i’s marginal choice probability conditional on Xi.

Assumption N. (iii) Sαi(X)|Xi=xi
⊆ Sαi(X)|Xi=x∗i

for all xi ∈ SXi .

Assumption N-(iii) requires X−i to have sufficient variations conditional on Xi = x∗i , which

is satisfied in various situations. For instance, this is the case when Sαi(X)|Xi=x∗i
has full

support [0, 1]. See e.g. Wan and Xu (2014); Lewbel and Tang (2015).

Corollary 3. Let S ∈ M2. Suppose assumptions SC, ER and N (i) to (iii) hold. Then the results in

Proposition 6 hold, where C∞
i = {xi ∈ SXi : Rank of Ri(xi) ≥ 2I−1 − 2}.

There are normalizations other than assumption N. For instance, we can normalize two

quantiles of the marginal distributions. Specifically, for τi1, τi2 ∈ Sαi(X)|Xi=x∗i

⋂
(0, 1), we can

set the quantiles QUi(τi1) and QUi(τi2) at some values, as long as (strict) monotonicity is

satisfied. Proposition 6 still holds. Second, we can use the usual mean/variance normal-

ization in binary variable models. This is possible under a full support condition. Namely,

supposeRi(x∗i ) has rank 2I−1 − 2 and (0, 1) ⊆ Sαi(X)|Xi=x∗i
. Then we can set E(Ui) = 0 and

Var(Ui) = 1. Specifically, by Lemma 3, πi is identified up to location and scale. Hence, all

the quantiles QUi are identified up to location and scale by (8). The latter are determined by

the mean and variance normalization.

Lastly, we note that given the identification of the joint distribution of types, we might

be interested in some additional structures on the error terms. For instance, suppose the

private signals are affiliated in the sense of Milgrom and Weber (1982) as when Ui = ξ + εi

where ξ is a common shock to all players and εi are iid (across players) idiosyncratic errors.

Following Li and Vuong (1998), we can further deconvolute the joint distribution FU to

identify the marginal distributions of ξ and εi.
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4.3. Identification of M3. Though not our focus of interest, M3 is nonparametrically

identified in general. The argument does not essentially differ from that ofM2: Assumption

I only relaxes the support condition for identification of σ∗−i in Lemma 2. We illustrate this

in the next lemma.

Lemma 4. Let S ∈ M3. Fix x ∈ SX. Then σ∗−i(·|x, u∗i (x)) is identified by

σ∗−i(a−i|x, u∗i (x)) = P (Y−i = a−i|X = x) .

The proof is straightforward, hence omitted. By Proposition 2, we can also show that

σ∗−i(a−i|x, u∗i (x)) = P (Y−i = a−i|α(X) = α(x)). Similar results can be found in Pesendorfer

and Schmidt-Dengler (2003); Aguirregabiria and Mira (2007); Bajari et al. (2010), among

others. Further, the identification of πi and QUi inM3 follows Lemma 3 and Proposition 6

under assumptions ER and N. In particular, if Sαi(X)|Xi=xi
is not a singleton, then the rank

condition requires that X−i contain at least one continuous random variable to ensure there

are sufficient variations in σ∗−i(·|X, u∗i (X)) conditional on Xi and αi(X) by varying X−i. For

a recent contribution using special regressors, see Lewbel and Tang (2015).

5. DISCUSSION

In this section, we consider four issues related to our identification analysis. First, we

illustrate how to nonparametrically estimateM2 based on the identification strategy estab-

lished in Section 4.2. Second, without assumption ER, we examine the partial identification

ofM2. Third, we relax the single equilibrium assumption, i.e., we allow for multiple m.p.s.

BNEs in the DGP, under which the observed data is a mixture of distributions from all these

equilibria. Fourth, we discuss the issue of unobserved heterogeneity.

5.1. A Sketch of Nonparametric Estimation. To demonstrate how our nonparametric

identification results can be used for estimation, we provide a sketch of a simple estimation

procedure of a structure
[
π; {QUi}I

i=1; CU
]

inM2. A full development of nonparametric

inference is beyond the scope of this paper.

For simplicity, we maintain the conditions in Corollary 3. Suppose the researcher observes

an iid random sample {(X′1, Y′1)
′, · · · , (X′n, Y′n)′}, where Xt = (X′1t, · · · , X′It)

′ and Yt =
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(Y1t, · · · , YIt)
′ for t = 1, · · · , n. Note that the number of players I is assumed to be constant

for expositional simplicity. Here we suggest a flexible two–stage estimation procedure

using sieve methods.

Step 1: Estimate the copula function CU . For this step, we begin by estimating the marginal

choice probability function αi(·). There are several nonparametric methods for such a

purpose. Here we use sieve methods; see Chen (2007). Let F be a continuous distribution

function with an interval support. For instance, we can choose F = Φ, the standard Normal

distribution. We then estimate αi(·) by α̂i(·) = F(γ̂i(·)), where

γ̂i = argsupγi∈Γn

1
n

n

∑
t=1

{
Yit log F(γi(Xt)) + (1−Yit) log

[
1− F(γi(Xt))

]}
,

in which Γn is a Hölder class of real valued smooth basis functions mapping SX to R.

The estimation of CU follows (5). Note that with CU and α(X), we can obtain the

conditional choice probability of Y = a for any a ∈ A given X. Let P(Y = a|X) =

GI(a; CU , α(X)) where GI is a known function depending on I, CU and α(X). For example,

suppose I = 2. We can show that

G2((1, 1); CU , α) = CU(α),

G2((0, 1); CU , α) = CU(1, α2)− CU(α),

G2((1, 0); CU , α) = CU(α1, 1)− CU(α),

G2((0, 0); CU , α) = 1− CU(α1, 1)− CU(1, α2) + CU(α).

Further, let Cn be a Hölder class of “p–smooth” real valued basis functions mapping [0, 1]I

to R for some p > 1, which can approximate any square–integrable function arbitrarily

well. Using the sieve MLE method, we then define our copula estimator by

ĈU = argsupCU∈Cn

1
n

n

∑
t=1

∑
a∈A

1(Yt = a) log GI(a; CU , α̂(X)).
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Consistency and asymptotic distribution of α̂(·) and ĈU can be obtained from e.g. Chen

(2007).17 As the function estimator ĈU might not be a proper copula, we can modify ĈU by

using a rearrangement approach similar to Chernozhukov et al. (2010b).

Step 2: Estimate the payoff functions πi and quantile functions QUi . Using Lemma 2, we

first estimate the equilibrium beliefs σ∗−i by

σ̂∗−i(a−i|Xt, u∗i (Xt)) =
∂GI((1, a−i); ĈU , α)

∂αi

∣∣
α=α̂(Xt)

.

Next, we estimate πi and QUi from (8). Suppose QUi ∈ L2(0, 1). Then, for a given

complete orthonormal sequence {ψk, k ≥ 1} in L2(0, 1), we have

QUi(α) =
∞

∑
k=1

q∗k · ψk(α), ∀α ∈ Sαi(X),

where q∗k =
∫ 1

0 ψk(s) ·QUi(s)ds. Let Qn =
{

∑Kn
k=1 qkψk : qk ∈ Qk

}
be a sieve space depend-

ing on the sample size, where Qk ⊂ R is compact. Note that (8) implies that πi is identified

up to QUi , i.e.,

πi(·, xi) =
{

E
[
Σ∗−i(X)Σ∗

′
−i(X)

∣∣Xi = xi

]}−1
E
[
Σ∗−i(X)QUi(αi(X))

∣∣Xi = xi
]

.

Hence, our estimator of QUi is defined as follows:

Q̂Ui = arginfQUi∈Qn

n

∑
t=1

[
∑

a−i∈A−i

π̃i(a−i, Xit|QUi) · σ̂
∗
−i(a−i|Xt, u∗i (Xt))−QUi(α̂i(Xt))

]2

s.t. π̃i
(
a0
−i, x∗i |QUi

)
= 0, and ‖π̃i(·, x∗i |QUi)‖ = 1,

17Alternatively, (5) can be used to propose a kernel regression estimator of the copula with generated regressors
α̂(X). See Mammen, Rothe and Schienle (2012).
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where π̃i(·, ·|QUi) is a functional of QUi = ∑Kn
k=1 qkψk:

π̃i(·, Xit|QUi)

≡
[

n

∑
s=1

Σ̂∗−i(Xs)Σ̂∗
′
−i(Xs)K

(Xis − Xit

h

)]−1 [ n

∑
s=1

Σ̂∗−i(Xs)QUi(α̂i(Xs))K
(Xis − Xit

h

)]

=
Kn

∑
k=1

qk


[

n

∑
s=1

Σ̂∗−i(Xs)Σ̂∗
′
−i(Xs)K

(Xis − Xit

h

)]−1 [ n

∑
s=1

Σ̂∗−i(Xs)ψk(α̂i(Xs))K
(Xis − Xit

h

)] ,

where K and h are a kernel function and bandwidth, respectively. Then, we let π̂i(·, xi) =

π̃i(·, xi|Q̂Ui). The proposed estimation procedure is easy to implement. Its precise asymp-

totic properties can be derived using the functional delta method in Van Der Vaart and

Wellner (1996). As the quantile function estimator Q̂Ui might not be strictly increasing, we

can use Chernozhukov et al. (2010a)’s rearrangement approach to modify it, or choose a

shape preserving sieve as suggested by e.g. Chen (2007).

5.2. Partial Identification. In this subsection, we study the partial identification of the

game primitives when there are no exclusion restrictions, i.e. when assumption ER does

not hold. It is worth emphasizing that the lack of point identification of a structure here is

not due to multiple equilibria, but to the lack of identifying restrictions, i.e., the exclusion

restrictions and the rank conditions. This is similar to, e.g., Shaikh and Vytlacil (2011)

who study partial identification of the average structural function in a triangular model

without imposing a restrictive support condition. When there are multiple m.p.s. BNEs,

we still maintain the assumption of a single equilibrium being played for generating the

distribution of observables.

By the same argument as for the identification ofM2, the copula function CU is point–

identified on the extended support S e
α(X). Let C be the set of strictly increasing (on (0, 1]I)

and continuously differentiable copula functions mapping [0, 1]I to [0, 1]. Then, the identifi-

cation region of CU can be characterized by

CI =
{

C̃U ∈ C : C̃U(α) = CU(α), ∀α ∈ S e
α(X)

}
.
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For each C̃U ∈ CI , suppose we set F̃Ui to be the uniform distribution on [0, 1] and π̃i(·, x) =

αi(x). Clearly, the constructed structure
[
π̃; F̃U

]
is observationally equivalent to the under-

lying structure. Thus, CI is the sharp identification region for CU .

Next, we turn to the set identification of the quantile function QUi . By assumption R, QUi

belongs to the set of strictly increasing and continuously differentiable functions mapping

[0, 1] to R, denoted as Q. The next lemma shows thatM2 imposes no restrictions on QUi

and its identification region is Q.

Lemma 5. Let S ∈ M2. For any (Q̃U1 , · · · , Q̃UI ) ∈ Q I , there exists an observationally equivalent

structure S̃ ∈ M2 with the marginal quantile function profile (Q̃U1 , · · · , Q̃UI ).

Now we discuss the sharp identification region for πi. Let G be the set of functions

mapping A−i ×SX to R.

Proposition 7. Let S ∈ M2. Suppose assumption SC holds. Then the sharp identification region

is given by
{[

π̃; {Q̃Ui}I
i=1; C̃U

]
: (Q̃Ui , C̃U) ∈ (Q, CI), π̃ ∈ ΘI

(
{Q̃Ui}I

i=1, C̃U
)}

, where

ΘI({Q̃Ui}
I
i=1, C̃U) ≡

{
π̃ ∈ G I : (a) for all x ∈ SX and i,

Q̃Ui(αi(x)) = ∑
a−i∈A−i

π̃i(a−i, x)× σ∗−i(a−i|x, u∗i (x)); (b) for any m.p.s. profile δ :

Eδ

[
π̃i (Y−i, X) |X = x, Ui = Q̃Ui(αi)

]
− Q̃Ui(αi) is weakly monotone in αi ∈ (0, 1)

}
.

In the definition of ΘI , condition (a) requires that πi(·, x) should belong to a hyperplane, for

which the slopes are given by the identified beliefs Σ∗−i(x); condition (b) does not impose

much restriction on the structural parameters. Clearly, ΘI is nonempty and convex.18

The identification region is unbounded and large. To see this, fix an arbitrary non–

negative function κi(x) ≥ 0. Let ψi : R→ R satisfy: (i) ψi is a continuously differentiable

and strictly increasing function; and (ii) for all x, κi(x)QUi(αi) − ψi(QUi(αi)) is weakly

decreasing in αi ∈ (0, 1). Note that condition (ii) is equivalent to: infui∈SUi
ψ′i(ui) ≥

supx∈SX
κi(x). Clearly, there are plenty of choices for such a function ψi. Let further Q̃Ui =

ψi(QUi) and π̃i(a−i, x) = ξi(x) + κi(x) × πi(a−i, x), in which ξi(x) = ψi(QUi(αi(x))) −

18 To see the nonemptiness, we can simply take π̃i(·, x) = Q̃Ui (αi(x)).
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κi(x)×QUi(αi(x)). Then, it can be verified that the constructed structure [π̃; {Q̃Ui}I
i=1; C̃U

]
belongs to the identified set.19 To narrow down the identification region, additional restric-

tions need to be introduced. Instead of imposing assumption ER, an alternative approach is

to make assumptions on the payoff functional form. For instance, de Paula and Tang (2012)

set πi(a−i, x) = π∗i (x) + gi(a−i) × h∗i (x), where gi is a function known to all players as

well as to the econometrician, and (π∗i , h∗i ) are structural parameters in their model. Then,

Proposition 7–(a) becomes: for all x ∈ SX and i,

Q̃Ui(αi(x)) = π̃∗i (x) + h̃∗i (x)× ∑
a−i∈A−i

gi(a−i)× σ∗−i(a−i|x, u∗i (x)),

which imposes a linear restriction on π̃∗i (x) and h̃∗i (x) by noting that ∑a−i∈A−i
gi(a−i) ×

σ∗−i(a−i|x, u∗i (x)) is identified under the conditions in Lemma 2. Moreover, Proposition 7–(b)

imposes an additional restriction on the copula function C̃U .

When Sα(X) = (0, 1)I , CI degenerates to the singleton {CU}. In this case, the sharp

identification region for (π, {QUi}I
i=1) can be characterized in a more straightforward

manner:

Θ∗I =
{
(π̃, {Q̃Ui}

I
i=1) ∈ G I ×Q I : (a′) for all x ∈ SX and i,

Q̃Ui(αi(x)) = ∑
a−i∈A−i

π̃i(a−i, x)× σ∗−i(a−i|x, u∗i (x)); (b′) and for all α−i ∈ [0, 1]I−1,

∑
a−i∈A−i

π̃i(a−i, x)× σα
−i(a−i, α−i, αi)− Q̃Ui(αi) is weakly monotone in αi ∈ (0, 1)

}
,

where σα
−i(a−i, α−i, αi) = PCU (Cj ≤ αj ∀aj = 1; Cj > αj ∀aj = 0|Ci = αi).

5.3. Multiple Equilibria in DGP. The problems raised by multiple equilibria have a long

history in economics. See e.g. Jovanovic (1989) for empirical implications of multiple

equilibria, and Morris and Shin (2001) for a recent discussion in macroeconomic modeling.

19Note that the payoff normalization imposed in Proposition 6 is not helpful to bound the payoffs, since it
applies only at one point x∗i ∈ SXi . Specifically, if one imposes a similar normalization on πi(·, x∗) for some
x∗ ∈ SX , we would need to restrict the monotone mapping ψi to satisfy ψi(αi(x∗)) = α∗i (x) when constructing
an observational equivalence structure. Nevertheless, without assumption ER, the unboundedness of the
partially identified set still holds for all x ∈ SX satisfying αi(x) 6= αi(x∗).
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The static games literature have struggled with difficulties arising from equilibrium multi-

plicity since the mid 1980s. See e.g. Bjorn and Vuong (1984). Researchers have developed

essentially three approaches. In the first approach, one assumes there is a single equilibrium

in the DGP as we do. See e.g. Aguirregabiria and Nevo (2013) for a survey. Sometimes

this assumption is satisfied when the model admits a unique equilibrium. Pesendorfer and

Schmidt-Dengler (2003) provide empirical justifications for this assumption, in particular,

when data come from the same game repeatedly played across different time periods. See

also e.g. Bajari et al. (2010). A more sophisticated solution is to identify a subset in the

support of covariates that admit a unique equilibrium. See Xu (2014) in a parametric setting.

In the second approach, a seminal paper by Tamer (2003) introduces partial identification

analysis in a discrete game of complete information. This allows us to bound the parameters

of interest without specifying which equilibrium is chosen. In a parametric model, Aradillas-

Lopez and Tamer (2008) obtain inequality constrains by exploiting level–k rationality in

either a complete or incomplete information framework. In a semiparametric setting with

incomplete information, Wan and Xu (2014) develop upper/lower bounds for equilibrium

beliefs to achieve point identification of payoff parameters under a full support condition

on regressors. In the third approach, one introduce a probability distribution λ over the set

of equilibria. See e.g. Bjorn and Vuong (1984); Bajari et al. (2010) for complete information

games, and Aguirregabiria and Mira (2007) for incomplete information games in parametric

settings.

In general, the issue of multiple equilibria is a largely unexplored area of research in

a nonparametric framework, which is considered in this paper. We first address how to

detect multiple equilibria in our setting. Next we discuss the problem of identification in the

presence of multiple equilibria. Our discussion below focuses onM2, sinceM1 imposes

almost no restrictions by Proposition 1.20

InM2, we can detect multiple equilibria from the model restrictions derived in Propo-

sition 2, specifically, restrictions R1 and R2. This is because, in the presence of multiple

equilibria in the data, R1 and/or R2 are violated in general. Moreover, if assumption ER

20In M3 or M′3, multiple equilibria can be detected by testing the conditional independence as shown in
Proposition 3 and corollary 2. See also de Paula and Tang (2012).
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holds, (8) introduces additional model restrictions, providing stronger power to detect the

existence of multiple equilibria. To see this, we first fix Xi = xi. Under assumption ER, (8)

can be rewritten as

∑
a−i∈A−i

πi(a−i, xi)× σ∗−i(a−i|x, u∗i (x))−QUi(αi(x)) = 0, (10)

for all x ∈ SX|Xi=xi
. Suppose Sαi(X)|Xi=xi

is not a singleton. Then, there are strategic

effects. In addition, conditioning on αi(X) = αi ∈ Sαi(X)|Xi=xi
, the random vector Σ∗−i(X),

which is a probability mass function on A−i, has to be distributed on a hyperplane in R2I−1
.

In addition, the slope πi(·, xi) of the hyperplane remains constant as αi varies, while its

intercept QUi(αi(x)) strictly increases in αi. Because the equilibrium beliefs σ∗−i(·|x, u∗i (x))

are identified under assumption SC, violations of these restrictions indicate the presence of

multiple equilibria. In the special case of I = 2, these restrictions imply that, conditional on

Xi = xi, αj(x) is a monotone function of αi(x). Violations of such a monotonicity indicates

multiple equilibria.

Next, to relax the single equilibrium assumption for identification analysis, we follow

Henry et al. (2014) by introducing an instrumental variable Z, which does not affect players’

payoffs, the distribution of types, or the set of equilibria in the game, but can effectively

change the equilibrium selection. For each x ∈ SX, let E (x) be the set of m.p.s. BNEs in

the game with X = x. Note that E (x) could be an infinite collection and the number of

equilibria depends on the value of x. To simplify, we assume that players only focus on

a subset Γ(x) of E (x) for the DGP, i.e., the set of equilibria that will be played in the data.

We further assume that the number of elements in Γ(x) is finite and bounded above by a

constant J (J ≥ 2) for all x.

Let λ be a probability distribution {pλ
1 , · · · , pλ

J } on the support {1, · · · , J} such that the

j–th equilibrium occurs with probability pλ
j . The distribution λ may have some zero mass

points, which means that the number of equilibria in Γ(x) is strictly less than J. Essentially, λ

summarizes the mixture of equilibrium distributions arising from the equilibrium selection

mechanism. Following Henry et al. (2014), we assume that the probability distribution λ

varies with X and Z, where Z is a vector of instrumental variables that does not affect either

E (X) or Γ(X), but has influence on the equilibrium selection through λ.
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In Henry et al. (2014), it is shown that the set of component distributions is partially

identified in the space of probability distributions. For example, for J = 2, the observed

distribution FY|X=x is a convex combination of the two component distributions generated

from the two equilibria in Γ(x). Then, variations of the instrumental variable Z cause

the mixture distribution to move along a straight line in the function space of probability

distributions. Further, we can point identify the set of distributions corresponding to Γ(x)

if Z has sufficient variations. To see this, w.l.o.g. let J = 2. For each x ∈ SX, suppose

there exist some (unknown) z, z′ ∈ SZ|X=x such that λ = (0, 1) when (X, Z) = (x, z)

and λ = (1, 0) when (X, Z) = (x, z′). In the space of probability distributions, the two

equilibrium distributions can be identified as the two extreme points of the convex hull

(which is a straight line) of the collection of distributions FY|X=x,Z=z for all z ∈ SZ|X=x.

Either one of them represents a probability distribution from a single m.p.s. BNE given

x, which thereafter provides the identification of the underlying game structure as we

discussed in the identification section.

5.4. Correlated Types vs Unobserved Heterogeneity with Independent Types. Within a

paradigm where private signals are independent unconditionally or conditionally given

X, a known approach for generating correlation among actions given X is to introduce

unobserved heterogeneity. In a fully parametric setting, Aguirregabiria and Mira (2007) and

Grieco (2014) introduce unobserved heterogeneity through some payoff relevant variables

ζ publicly observed by all players, but not by the researcher. An important question is

whether one can distinguish this model from our model with correlated types. BecauseM1

can rationalize any distributions generated by a model with unobserved heterogeneity and

independent types, we considerM2 below.

Consider the following payoffs with unobserved heterogeneity:

Πi(Y, X, ζ, Ui) =

 πi(Y−i, X, ζ)−Ui, if Yi = 1,

0, if Yi = 0,

where ζ is a discrete variable that is unobserved to the researcher. Let the support of ζ

be {z1, · · · , zJ} and pj(x) = P(ζ = zj|X = x). To simplify, we assume there are only two

players with U1⊥U2 and (U1, U2)⊥(X, ζ). We assume further that there is only a single
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equilibrium in the DGP for every (x, zj) ∈ SXζ , which is also assumed in our model

M2. Then, the joint choice probability for the model with unobserved heterogeneity and

independent types is

E(Y1Y2|X = x) =
J

∑
j=1

E(Y1Y2|X = x, ζ = zj) · pj(x) =
J

∑
j=1

α1(x, zj) · α2(x, zj) · pj(x)

where αi(x, zj) = E(Yi|X = x, ζ = zj). Moreover, the marginal choice probability is

αi(x) =
J

∑
j=1

αi(x, zj) · pj(x), for i = 1, 2,

where αi(x) = E(Yi|X = x).

We now argue that these joint and marginal choice probabilities can violate restriction R1

in Proposition 2. Specifically, R1 requires that E(Y1Y2|X = x) be a function of (α1(x), α2(x))

only. The model with unobserved heterogeneity and independent types does not exclude the

possibility that there exist x, x′ ∈ SX such that αi(x) = αi(x′) for i = 1, 2, but E(Y1Y2|X =

x) 6= E(Y1Y2|X = x′). For instance, suppose J = 2, pj(x) = pj(x′) = 0.5 for j = 1, 2,

α1(x, z1) = α2(x, z1) = 0.4, α1(x, z2) = α2(x, z2) = 0.6, α1(x′, z1) = 0.3, α2(x′, z1) = 0.7,

α1(x′, z2) = 0.7, α2(x′, z2) = 0.3. Therefore, α1(x) = α1(x′) = 0.5 and α2(x) = α2(x′) = 0.5,

but E(Y1Y2|X = x) = 0.26 6= E(Y1Y2|X = x′) = 0.21. Consequently, the model with

unobserved heterogeneity and independent types can be distinguished from modelM2.

We have focused on R1 above, but monotonicity in αi(X) (see R2) could be violated as well

for similar reasons.

6. CONCLUSION

This paper studies the rationalization and identification of discrete games with correlated

types within a fully nonparametric framework. Allowing for correlation across types is

important in global games and in models with social interactions as it represents correlated

information and homophily, respectively. Regarding rationalization, we show that our

baseline game–theoretical modelM1 with a single m.p.s. BNE in the DGP does not impose

any essential restrictions on observables, and hence is not testable in view of players’ choice

probabilities only. We also show that exogeneity is testable, because R1–R3 in Proposition 2
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characterize all the restrictions imposed by exogeneity. For instance, we can view R1 as

a regression of the joint choices on covariates that depends on the latter only through

the marginal choice probabilities. Thus, to test R1 we can extend Fan and Li (1996) and

Lavergne and Vuong (2000) significance tests by allowing for estimation of the marginal

choice probabilities. Moreover, R2 is a monotonicity restriction that can be tested by testing

the convexity of its integral, see e.g., Delgado and Escanciano (2012).21

ModelM3 is mostly adopted in empirical work within a parametric or semiparametric

setting. We show that all its restrictions reduce to the mutual independence of choices

conditional on covariates. This can be tested by using conditional independence tests, see

e.g. Su and White (2007, 2008). Moreover, Proposition 3 and Corollary 2 show that the same

restriction characterizes modelM′
3 which only assumes mutual independence of types

conditional on covariates and a single (not necessary monotone) BNE in the DGP. These two

assumptions seem to be unrelated, but actually are two sides of the same coin. Maintaining

a single equilibrium in the DGP, we can use the mutual independence of choices given

covariates to test mutual independence of types which is widely assumed in the literature.

On the other hand, maintaining mutual independence of types, we can use the same mutual

independence of choices to test for a single equilibrium versus multiple equilibria. See, e.g.,

de Paula and Tang (2012).

It is worth noting that the above tests do not rely on identification and consequently

on the assumptions used to identify the primitives of the various models. In particular,

we show that modelM2 is identified up to a single location–scale normalization under

exclusion restrictions, rank conditions and a non–degenerate support condition. The

exclusion restrictions take the form of excluding part of a player’s payoff shifters from all

other players’ payoffs as frequently assumed in the literature. Specifically, the dependence

of players’ joint choices on the marginal choice probabilities identifies the dependence

across types, while the dependence of a player’s marginal choice probabilities on her

equilibrium beliefs identifies her payoffs. Without exclusion restrictions, we show that the

sharp identification region of players’ payoffs is unbounded.

21In the context of finite normal form games, the Quantal Response Equilibrium has an identical structure to
BNE in our setting. In a semiparametric setting, Melo et al. (2014) obtain model restrictions characterized by
monotonicity, which are similar to R1, and then propose a moment inequality test.
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Our identification results are useful for estimation of global games and social interaction

models. In a semiparametric setup, Liu and Xu (2012) propose an estimation procedure

for our modelM2 with linear payoffs, and establish the root–n consistency of the linear

payoff coefficients. A fully nonparametric estimation deserves to be studied following the

estimation sketch given in Section 5.1. Specifically, we could rely on the identification results

and propose sample–analog estimators for the players’ payoffs and the joint distribution of

private information. The equilibrium condition (8) is the key estimating equation. It has

the nice feature to be partially linear, namely, linear in the payoffs and nonparametric in

the quantile. A difficulty is to take into account the estimation of the beliefs of the player at

the margin and the marginal choice probabilities. Part of the problem could be addressed

by using the recent literature on nonparametric regression with generated covariates, see

e.g. Mammen et al. (2012). An important question is to determine the optimal (best) rate at

which the primitives ofM2 can be estimated from players’ choices. Proposition 2 which

characterizes all the restrictions imposed byM2 will be useful, see e.g. Guerre et al. (2000).
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APPENDIX A. EXISTENCE OF M.P.S. BNES

A.1. Proof of Lemma 1. First, we show the existence of m.p.s. BNE. Assumptions G1–G6 of Reny

(2011) are satisfied in our discrete game under assumption R. Moreover, by assumption M, when

other players employ m.p.s., player i’s best response is also a joint–closed set of m.p.s.. By Reny

(2011, Theorem 4.1), the conclusion follows.

We now show the second half. Fix X = x. Because σ∗−i(a−i|x, ui) are continuous in ui under

assumption R, then ∑a−i
πi(a−i, x)σ∗−i(a−i|x, ui)− ui is a continuously decreasing function in ui.

Suppose ui(x) < u∗i (x) < ui(x). It follows that

∑a−i
πi(a−i, x)σ∗−i(a−i|x, u∗i (x))− u∗i (x) = 0.

Hence, conditional on ui(X) < u∗i (X) < ui(X), we have

Yi = 1 [Ui ≤ u∗i (X)] = 1

[
Ui ≤∑

a−i

πi(a−i, X)σ∗−i
(
a−i|X, u∗i (X)

)]
.

Suppose u∗i (x) = ui(x). Then ∑a−i
πi(a−i, x)σ∗−i(a−i|x, ui(x)) − ui(x) ≥ 0, which implies that

conditional on u∗i (X) = ui(X), there is

Yi = 1 [Ui ≤ ui(X)] ≤ 1

[
Ui ≤∑

a−i

πi(a−i, X)σ∗−i
(
a−i|X, ui(X)

)]
.

Because 1 [Ui ≤ ui(X)] = 1 a.s., thus

Yi = 1 [Ui ≤ ui(X)] = 1

[
Ui ≤∑

a−i

πi(a−i, X)σ∗−i
(
a−i|X, ui(X)

)]
a.s.

Similar arguments hold for the case u∗i (X) = ui(X).

�

A.2. Existence of m.p.s. BNEs under primitive conditions.

Definition 3. a set A ⊆ Rd is upper if and only if its indicator function is non–decreasing, i.e., for any

x, y ∈ Rd, x ∈ A and x ≤ y imply y ∈ A, where x ≤ y means xi ≤ yi for i = 1, · · · , d.

Assumption PRD (Positive Regression Dependence). For any x ∈ SX and any upper set A ⊆ RI−1,

the conditional probability P (U−i ∈ A|X = x, Ui = ui) is non–decreasing in ui ∈ SUi |X=x.

Assumption SCP (Strategic Complement Payoffs). For any x ∈ SX and ui ∈ SUi |X=x, suppose

a−i ≤ a′−i, then πi(a−i, x) ≤ πi(a′−i, x).
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Lemma 6. Suppose assumptions R, PRD and SCP hold. For any x ∈ SX , there exists an m.p.s. BNE.

Proof. By Lemma 1, it suffices to show that assumption M holds. Fix x ∈ SX. Given an arbitrary

m.p.s. profile: for i = 1, · · · , I, δi(x, ui) = 1[ui ≤ ui(x)], where ui(·) is arbitrarily given. By

assumptions PR and SCP, and Lehmann (1955), for any ui < u′i in the support, we have

Eδ

[
πi(Y−i, X)|X = x, Ui = u′i

]
≤ Eδ [πi(Y−i, X)|X = x, Ui = ui] .

Thus, Eδ [πi(Y−i, X)|X = x, Ui = ui]− ui is a weakly decreasing function of ui. �

APPENDIX B. RATIONALIZATION

B.1. Proof of Proposition 1. Prove the “only if part” first: Proofs by contradiction. Let FY|X be

rationalized by M1, i.e., some S ∈ M1 can generate FY|X. Fix X = x and let equilibrium be

characterized by (u∗1(x), · · · , u∗I (x)). For some a ∈ A, w.l.o.g., a = (1, · · · , 1), suppose P(Y = a|X =

x) = 0 and P(Yi = ai|X = x) > 0 for all i. It follows that P(U1 ≤ u∗1(x), · · · , UI ≤ u∗I (x)|X = x) = 0

and P(Ui ≤ u∗i (x)|X = x) > 0 for all i, which violates assumption R. Then S 6∈ M1. Contradiction.

Proofs for the “if part”: Fix an arbitrary x ∈ SX. First, we assume P(Y = a|X = x) > 0 for all

a ∈ A, which will be relaxed later. Now we construct a structure inM1 that will lead to FY|X(·|x).

Let πi(a−i, x) = αi(x) for i = 1, · · · , I. Note that there is no strategic effect by construction and

assumption M is satisfied. Now we construct FU|X(·|x). Let FUi |X(·|x) be uniformly distributed on

[0, 1]. So it suffices to construct the copula function CU|X(·|x) on [0, 1]I . We first construct CU|X(·|x)

on a finite sub–support: {E(Y1|X = x), 1} × · · · × {E(YI |X = x), 1}. Then we extend it to a proper

copula function with the full support [0, 1]I . Let CU|X(α1, · · · , αI |x) = E(∏
p
j=1 Yij |X = x) where

i1, · · · , ip are all the indexes such that αij = E(Yij |X = x); while other indexes have αk = 1. Because

P(Y = a|X = x) > 0 for all a ∈ A, CU|X(·|x) is strictly increasing in each index on the finite

sub–support. Thus it is straightforward that we can extend CU|X(·|x) to the whole support [0, 1]I

as a strictly increasing (on the support (0, 1]I) and smooth copula function. By construction, it is

straightforward that the constructed structure can generate FY|X(·|x).

When P(Y = a|X = x) = 0 for some a’s in A. By the condition in Proposition 1, the conditional

distribution of Y given X = x is degenerated in some indexes. W.l.o.g., let {1, · · · , k} be set of

indexes such that P(Yi = 1|X = x) = 0 or 1, and let {k + 1, · · · , I} satisfy 0 < P(Yi = 1|X = x) < 1.

Then let again πi(a−i, x) = αi(x) for i = 1, · · · , I. For player i = k + 1, · · · , I, we can construct

a sub–copula function CUk+1,··· ,UI |X(·|x) as described above such that CUk+1,··· ,UI |X(·|x) is strictly
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increasing and smooth. Further, we can extend CUk+1,··· ,UI |X(·|x) to a proper copula function having

the full support [0, 1]I . Similarly, the constructed structure generates FY|X(·|x). �

B.2. Rationalizing All Probability Distributions. Suppose we replace assumption R with the

following conditions in Reny (2011): For every x ∈ SX ,

G.2. The distribution FUi |X(·|x) on SUi |X=x is atomless.

G.3. There is a countable subset S 0
Ui |X=x of SUi |X=x such that every set in SUi |X=x assigned

positive probability by FUi |X(·|x) contains two points between which lies a point in S 0
Ui |X=x.

Note that it is straightforward that assumptions G.1 and G.4 through G.6 in Reny (2011) are

all satisfied in our discrete game because the action space A is finite and the conditional dis-

tribution of U given X = x has a hypercube support in RI . Thus, the conclusion in Lemma 1

still holds (i.e., existence of an m.p.s. BNE) under assumptions G.2, G.3 and M. Moreover, let

M′
1 ≡ {S : G.2, G.3 and M hold and a single m.p.s. BNE is played}. Then, we generalize Proposi-

tion 1.

Lemma 7. Any conditional distribution FY|X can be rationalized byM′
1.

Proof. We prove by construction. Fix x. Let πi(a−i, x) = αi(x) for all i. Note that there is no strategic

effect by construction and assumption M is satisfied. Now we construct FU|X(·|x). Let [0, 1]I be

the support of the distribution and partition it into 2I disjoint events:
⊗I

i=1{[0, αi(x)), [αi(x), 1]} 22.

Further, we define a conditional distribution FU|X=x,U∈Bj
as a uniform distribution on Bj, where Bj is

the j–th event in the partition of the support. Moreover, let P(U ∈ Bj|X = x) = P(Y = a(j)|X = x)

where a(j) ∈ A and satisfies ai(j) = 0 if the i–th argument of event Bj is [αi(x), 1], and ai(j) = 1 if

the i–th argument is [0, αi(x)). With such construction, the marginal distribution of Ui given X = x

is a uniform distribution on [0, 1] which satisfies assumptions G.2 and G.3. It can be verified that the

constructed structure leads to FY|X(·|x). �

B.3. Proof of Proposition 2.

22To have meaningful partition, it is understood that {[0, αi(x)), [αi(x), 1]} becomes {{0}, (0, 1]} when αi(x) =
0.
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Proof. We first show the "only if part”. Suppose that the distribution FY|X(·|·) rationalized byM1 is

derived from S̃ = [π̃; F̃U|X ] ∈ M2 . Then

E
( p

∏
j=1

Yij |X
)
= P

(
Yi1 = 1, · · · , Yip = 1|X

)
= P

(
Ui1 ≤ ũ∗i1(X), · · · , Uip ≤ ũ∗ip

(X)|X
)
= C̃Ui1

,··· ,Uip

(
αi1(X), · · · , αip(X)

)
.

Similarly,

E
( p

∏
j=1

Yij |αi1(X), · · · , αip(X)
)
= C̃Ui1

,··· ,Uip

(
αi1(X), · · · , αip(X)

)
.

Thus, we have condition R1. Further, R2 and R3 obtain by the properties of the copula function

C̃Ui1
,··· ,Uip

.

Proofs for the “if part”. For any x ∈ SX , let π̃i(·, x) = αi(x). Let F̃Ui denote the CDF of uniform

distribution on [0, 1]. For all 1 ≤ i1 < · · · < ip ≤ I, (αi1 , · · · , αip) ∈ Sαi1
(X),··· ,αip (X) and x ∈ SX,

define F̃Ui1
,··· ,Uip

(·, · · · , ·) as follows: for each αi1 , · · · , αip ∈ Sαi1
(X),··· ,αip (X),

F̃Ui1
,··· ,Uip

(αi1 , · · · , αip) = E
[ p

∏
j=1

Yij

∣∣αi1(X) = αi1 , · · · , αip(X) = αip

]
.

Thus, we define F̃U on the support {α : (αi1 , · · · , αip) ∈ Sαi1
(X),··· ,αip (X); other αij = 1}.

By Proposition 1, we have that F̃Ui1
,··· ,Uip ,Uk (αi1 , · · · , αip , αk) < F̃Ui1

,··· ,Uip
(αi1 , · · · , αip) for any

k 6= ij, j = 1, · · · , p, αij > 0 and αk < 1. Further, under conditions R2, R3, F̃U is strictly increasing

and continuously differentiable on {α : (αi1 , · · · , αip) ∈ Sαi1
(X),··· ,αip (X); other αij = 1}. Hence, we

can extend it to the whole support [0, 1]I as a proper distribution function such that it is strictly

increasing and continuously differentiable on [0, 1]I . The extended F̃U(·) will yield a positive and

continuous conditional Radon–Nikodym density on [0, 1]I .

By construction, [π̃; F̃U ] ∈ M2. Fix X = x. The constructed structure [π̃; F̃U(·)] will generate the

given marginal distribution αi(x) for all i. Moreover, for any tuple {i1, · · · , ip} from {1, · · · , I},

P̃(Yi1 = 1, · · · , Yip = 1|X = x) = F̃Ui1
,··· ,Uip

(
αi1(x), · · · , αip(x)

)
= E

[ p

∏
j=1

Yij

∣∣αi1(X) = αi1(x), · · · , αip(X) = αip(x)
]
= E

[ p

∏
j=1

Yij

∣∣X = x
]
.

Because the tuple {i1, · · · , ip} is arbitrary, then [π̃, F̃U ] generates the distribution FY|X(·|x). �

B.4. Proof of Proposition 3.
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Proof. The “only if part” follows directly from assumption I and the single equilibrium condition. It

suffices to show the “if part”.

Fix a distribution FY|X that satisfies the condition. Let F̃Ui |X = F̃Ui be a uniform distribution on

[0, 1] and F̃U|X = ∏I
i=1 F̃Ui . Moreover, let π̃i(·, x) = αi(x) for any x ∈ SX . By construction, [π̃; F̃U|X ]

satisfies assumptions R, M, E, and I. Hence, [π̃; F̃U|X ] ∈ M3.

It suffices to show that the constructed structure [π̃; F̃U|X ] can generate FY|X . Fix x. By construction,

we have that P̃(Yi = 1|X = x) = αi(x). Moreover, for any tuple {i1, · · · , ip} from {1, · · · , I},

P̃(Yi1 = 1, · · · , Yip = 1|X = x) = F̃Ui1
,··· ,Uip

(
αi1(x), · · · , αip(x)

)
=

p

∏
j=1

αij(x) = P(Yi1 = 1, · · · , Yip = 1|X = x).

Because the tuple {i1, · · · , ip} is arbitrary, then [π̃, F̃U|X ] generates the distribution FY|X(·|x). �

APPENDIX C. IDENTIFICATION

C.1. Proof of Lemma 2.

Proof. Our proof is an extension of the copula argument in Darsow et al. (1992). Fix X = x. By law

of iterated expectation,

P (Yi = 1; Y−i = a−i|α(X) = α)

= EUi [P (Yi = 1; Y−i = a−i|α(X) = α, Ui)]

=
∫ QUi

(αi)

QUi
(0)

P (Y−i = a−i|α(X) = α, Ui = ui) dFUi (ui)

=
∫ αi

0
P
[
Y−i = a−i|α(X) = α, Ui = QUi (vi)

]
dvi

=
∫ αi

0
P
[
Y−i = a−i|α−i(X) = α−i, Ui = QUi (vi)

]
dvi

where the second equality comes from assumption E and the fact that P[Yi = 1|α(X) = α, Ui ≤

QUi (αi)] = 1 and P[Yi = 1|α(X) = α, Ui > QUi (αi)] = 0, the third equality from a change–in–

variable (vi = FUi (ui)) in the integration, and the last step is because conditioning on α−i(X) is

equivalent to conditioning on u∗j (X) for all j 6= i, therefore, Y−i is (conditionally) independent of X

(and αi(X) as well) given α−i(X) by assumption E.
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Therefore, we have

∂P (Yi = 1; Y−i = a−i|α(X) = α)

∂αi
= P

[
Y−i = a−i|α(X) = α, Ui = QUi (αi)

]
.

Note that QUi (αi(x)) = u∗i (x). By assumption E, we then have

σ∗−i(a−i|x, u∗i (x)) ≡ P [Y−i = a−i|X = x, Ui = u∗i (x)]

= P [Y−i = a−i|α(X) = α(x), Ui = u∗i (x)] =
∂P (Yi = 1; Y−i = a−i|α(X) = α)

∂αi

∣∣∣
α=α(x)

. �

C.2. Proof of Lemma 3.

Proof. By the proof in Lemma 1 and assumption ER, we have: for all x ∈ SX such that αi(x) ∈ (0, 1),

∑
a−i∈A−i

πi(a−i, xi)σ
∗
−i
(
a−i|x, u∗i (x)

)
= QUi (αi(x)). (11)

It follows that

∑
a−i∈A−i

πi(a−i, xi)E
[
σ∗−i
(
a−i|X, u∗i (X))

)
|Xi = xi, αi(X) = αi(x)

]
= QUi (αi(x)) (12)

The difference between (11) and (12) yields

∑
a−i∈A−i

πi(a−i, xi)× σ∗−i
(
a−i, x

)
= 0 (13)

where σ∗−i
(
a−i, x

)
≡ σ∗−i

(
a−i|x, u∗i (x)

)
−E

[
σ∗−i
(
a−i|X, u∗i (X)

)
|Xi = xi, αi(X) = αi(x)

]
.

When xi is fixed, we can identify πi(·, xi) as coefficients by varying σ∗−i(a−i, x) through x−i.

Suppose Ri(xi) has rank 2I−1 − 1. Because ∑a−i∈A−i
σ∗−i
(
a−i, x

)
= 0, πi(a−i, xi) equals the same

constant for all a−i ∈ A−i. By (11), we have πi(·, xi) = QUi (αi(x)). Therefore, Sαi(X)|Xi=xi
has to be

a singleton {α†
i }.

Next, suppose Ri(xi) has rank 2I−1 − 2. Then we can pick a vector π0
i (·, xi) ∈ R2I−1

such that

π0
i (a−i, xi) 6= π0

i (a′−i, xi) for some a−i, a′−i ∈ A−i, and π0
i (·, xi) satisfy

∑
a−i∈A−i

π0
i (a−i, xi)× σ∗−i

(
a−i, x

)
= 0.

Note that we also have ∑a−i∈A−i
1× σ∗−i

(
a−i, x

)
= 0. By linear algebra, πi can be written as

πi(·, xi) = ci(xi) + pi(xi)× π0
i (·, xi)

where ci, pi : SXi → R. Hence, πi are identified up to location (ci) and scale (pi). �
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C.3. Proof of Proposition 5. For the first half for the proposition, we show by contradiction. It is

straightforward that Sαi(X)|Xi=xi
has to be a singleton if πi(·, xi) is constant on A−i.

We now show the identification of the sign of πi(ai, xi)−πi(a0
i , xi). Let x, x′ ∈ SX|Xi=xi

, α(x) = α,

α(x′) = α′, and w.l.o.g., α′i < αi. Then

∑
a−i∈A−i

πi(a−i, xi)σ
∗
−i
(
a−i|x′, QUi (αi)

)
< QUi (αi(x)) = ∑

a−i∈A−i

πi(a−i, xi)σ
∗
−i
(
a−i|x, QUi (αi)

)
,

from which we have

pi(xi)× ∑
a−i∈A−i

π0
i (a−i, xi)×

[
σ∗−i
(
a−i|x′, QUi (αi)

)
− σ∗−i

(
a−i|x, QUi (αi)

)]
< 0.

Thus we identify the sign of pi(xi). It follows that the sign of πi(a−i, xi)− πi(a′−i, xi) = pi(xi)×[
π0

i (a−i, xi)− π0
i (a′−i, xi)

]
is also identified. �

C.4. Proof of Proposition 6.

Proof. By (8) and assumption N, clearly πi(a−i, ·) is identified on C0
i . Hence, it suffices to show that

the identification of πi(a−i, ·) on Ct
i implies its identification on Ct+1

i . By Definition 2, it suffices to

consider xi ∈ Ct+1
i /Ct

i .

Suppose that Case (ii) occurs, i.e. Ri(xi) has rank 2I−1 − 2 and there exists x′i ∈ Ct
i such that

Sαi(X)|Xi=xi

⋂
Sαi(X)|Xi=x′i

⋂
(0, 1) contains at least two different elements 0 < α′i < αi < 1. Let

x, x′ ∈ SX|Xi=xi
, αi(x) = αi and αi(x′) = α′i. Because x′i ∈ Ct

i , then by assumption πi(·, x′i) are

identified. Then both QUi (αi) and QUi (α
′
i) are identified by (8). Further, because Ri(xi) has rank

2I−1− 2, then by Lemma 3, πi(·, xi) is identified up to location and scale, i.e. ∃ ci(xi), pi(xi) ∈ R and

a known vector π0
i (·, xi) ∈ R2I−1

, such that πi(·, xi) = ci(x) + pi(x)× π0
i (·, xi). Moreover, because

αi, α′i ∈ Sαi(X)|Xi=xi

⋂
(0, 1), then we have

∑
a−i∈A−i

πi(a−i, xi)× σ∗−i(a−i|x, u∗i (x)) = QUi (αi),

∑
a−i∈A−i

πi(a−i, xi)× σ∗−i(a−i|x′, u∗i (x′)) = QUi (α
′
i).

It follows that

ci(xi) + pi(xi)× ∑
a−i∈A−i

π0
i (a−i, xi)× σ∗−i(a−i|x, u∗i (x)) = QUi (αi),

ci(xi) + pi(xi)× ∑
a−i∈A−i

π0
i (a−i, xi)× σ∗−i(a−i|x′, u∗i (x′)) = QUi (α

′
i).
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Note that QUi (αi), QUi (α
′
i), π0

i (·, xi), σ∗−i(a−i|x, u∗i (x)) and σ∗−i(a−i|x′, u∗i (x′)) are all known terms.

Because QUi (α
′
i) < QUi (αi), the determinant of the equation system cannot be zero. Then we can

identify ci(xi) and pi(xi) from the above two equations. Therefore, πi(·, xi) are identified.

Suppose that Case (iii) occurs, i.e. Ri(xi) has rank 2I−1 − 1 and there exists x′i ∈ Ct
i such that

Sαi(X)|Xi=xi
⊆ Sαi(X)|Xi=x′i

⋂
(0, 1). By Lemma 3, πi(·, xi) is identified by QUi (αi), which is known

since Sαi(X)|Xi=xi
⊆ Sαi(X)|Xi=x′i

⋂
(0, 1). �

APPENDIX D. EXTENSIONS

D.1. Proof of Lemma 5.

Proof. First, we construct a structure S̃ ∈ M2 such that (1) S̃ has the marginal quantile functions(
Q̃U1 , · · · , Q̃UI

)
; (2) C̃U(·) = CU(·) on [0, 1]I ; (3) for any x ∈ SX, i, and a−i ∈ A−i, let π̃i(a−i, x) =

Q̃Ui (E(Yi|X = x)). By construction, it is straightforward that assumptions R, M and E are satisfied.

Now it suffices to verify the observational equivalence between S̃ and S. Fix x ∈ SX . Note that in

the structure S̃ there is no strategic effects, then the equilibrium is: 1
{

ui ≤ Q̃Ui (E(Yi|X = x))
}

for

i = 1, · · · , I. Here we only verify the observational equivalence for action profile (1, · · · , 1) and the

proofs for other action profiles follow similarly:

P̃(Y1 = 1; · · · ; YI = 1|X = x) = C̃U (E(Y|X = x))

= CU (E(Y|X = x)) = P(Y1 = 1; · · · ; YI = 1|X = x). �

D.2. Proof of Proposition 7.

Proof. It is straightforward that π ∈ ΘI({QUi}I
i=1, CU). For sharpness, it suffices to show that for

any π̃ ∈ ΘI({Q̃Ui}I
i=1, C̃U), then S̃ ≡ (π̃, {Q̃Ui}I

i=1, C̃U), which belongs toM2 by the definition of

ΘI({Q̃Ui}I
i=1, C̃U), is observationally equivalent to the underlying structure S ≡ (π, {QUi}I

i=1, CU).

Fix X = x. It suffices to verify that δ∗ =
(

1
{

u1 ≤ Q̃U1(α1(x))
}

, · · · , 1
{

uI ≤ Q̃UI (αI(x))
} )

is a

BNE solution for the constructed structure. Because C̃U ∈ CI and by the proof for Lemma 2,

P̃δ∗
{

Y−i = a−i|X = x, Ui = Q̃Ui (αi(x))
}
= σ∗−i(a−i|x, u∗i (x)).

Then, by the conditions in the definition of ΘI({Q̃Ui}I
i=1, C̃U), 1

{
ui ≤ Q̃Ui (αi(x))

}
is the best re-

sponse to δ∗−i. Thus δ∗ is a BNE. �
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APPENDIX E. AN EXAMPLE

The purpose of this example is (i) to verify the assumptions of the paper using primitive conditions,

and (ii) to illustrate the identification results forM2 in Section 4.2.

E.1. Verifying Assumptions R and M. Let I = 2. We consider signals (U1, U2) satisfying the

following assumption.

Assumption TD (Type Distribution): (i) (U1, U2) ⊥ X. (ii) U1 ⊥ U2|V with Ui|V ∼ U[0, V] for

i = 1, 2 and V having density fV(v) = 3v2 on [0, 1].

Assumption TD-(i) is Assumption E in the paper. Assumption TD-(ii) implies

fU1U2|V(u1, u2|v) =
1
v2 on [0, v]2, for v ∈ [0, 1];

fU1U2(u1, u2) = 3[1−max(u1, u2)] on [0, 1]2;

fUi (ui) =
3
2
(1− u2

i ) on [0, 1], for i = 1, 2.

In particular, the support of (U1, U2) is [0, 1]2 and its density is continuous and strictly positive on

[0, 1)2. Thus, Assumption R is satisfied.

Next, for (u∗1 , u∗2) ∈ [0, 1]2 we have

P(U−i ≤ u∗−i|Ui = u∗i ) = 1(u∗i < u∗−i)

[
1−

(1− u∗−i)
2

1− u∗2i

]
+ 1(u∗i ≥ u∗−i)

2u∗−i
1 + u∗i

In particular, for any u∗−i ∈ [0, 1], P(U−i ≥ u∗−i|Ui = u∗i ) is continuous and non-decreasing in

u∗i ∈ [0, 1]. Thus, Assumption PRD is satisfied.

For any x ∈ SX, let ∆i(x) ≡ πi(1, x)− πi(0, x) ≥ 0 for i = 1, 2. By Lemma 6, it follows that

Assumption M is satisfied and there exists an m.p.s BNE. That is, there exists at least one pair of

equilibrium thresholds [u∗1(x), u∗2(x)] satisfying eq. (3) which can be written as

π1(0, x) + ∆1(x)×P[U2 ≤ u∗2(x)|U1 = u∗1(x)] = u∗1(x);

π2(0, x) + ∆2(x)×P[U1 ≤ u∗1(x)|U2 = u∗2(x)] = u∗2(x).

Assumption P0. For any x ∈ SX , we have πi(0, x) = 0 for i = 1, 2.
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To simplify the notation, let ∆i = ∆i(x) and u∗i = u∗i (x). By Assumption P0, if 0 ≤ u∗2 ≤ u∗1 ≤ 1 with

u∗2 < 1, the preceding system reduces to

∆1
2u∗2

1 + u∗1
= u∗1 ; (14)

∆2

[
1−

(1− u∗1)
2

1− u∗2
2

]
= u∗2 . (15)

On the other hand, if 0 ≤ u∗1 ≤ u∗2 ≤ 1 with u∗1 < 1, then the relevant system is obtained from (14)

and (15) by switching the indices 1 and 2.

E.2. Verifying Assumption SC. Suppose (∆1, ∆2) ∈ [0, 1]2. Note that there always exists a trivial

equilibrium (u∗1 , u∗2) = (0, 0) that solves the system (14) and (15) thereby confirming the existence of

an m.p.s. BNE. Such an equilibrium is not interesting because of the lack of “cooperation” between

the two players. Moreover, note that (14) and (15) imply that if (u∗1 , u∗2) 6= (0, 0), we have

2∆1∆2 =
u∗1(1 + u∗1)(1− u∗2

2)

1− (1− u∗1)
2 − u∗2

2 = u∗1(1 + u∗1)

[
1 +

(1− u∗1)
2

1− (1− u∗1)
2 − u∗2

2

]

≥ u∗1(1 + u∗1)

[
1 +

(1− u∗1)
2

1− (1− u∗1)
2

]
=

1 + u∗1
2− u∗1

≥ 1
2

. (16)

A similar argument applies to the region 0 ≤ u∗1 ≤ u∗2 ≤ 1 with u∗1 < 1. Hence, if ∆1∆2 < 1
4 ,

(u∗1 , u∗2) = (0, 0) is the unique equilibrium. Thus, we focus on {(∆1, ∆2) ∈ [ 1
4 , 1]2 : ∆1∆2 ≥ 1

4} to

find another equilibrium.

First, note that when ∆1∆2 = 1
4 , the above argument also shows that (u∗1 , u∗2) = (0, 0) is the

unique equilibrium. Second, consider the case ∆1∆2 > 1
4 and ∆1 ≥ ∆2, which implies that ∆1 > 0.5.

We restrict our attention to 0 ≤ u∗2 ≤ u∗1 ≤ 1 with u∗2 < 1 so that (14) and (15) hold. Note that (14)

can be written as u∗1
2 + u∗1 − 2∆1u∗2 = 0, which always has two roots in u∗1 . The non-negative one is

u∗1 = −1
2
+

√
1
4
+ 2∆1u∗2 ≡ φ1(u∗2) > 0 for u∗2 ∈ (0, 1] (17)

with φ1(0) = 0. Moreover φ1(1) = − 1
2 +

√
1
4 + 2∆1 < 1 if ∆1 < 1 and φ1(1) = 1 if ∆1 = 1. Note

that φ1(·) is strictly increasing and concave on [0, 1]. Furthermore φ′1(0) = 2∆1 > 1. Hence, φ1(·)

intersects the 45o-line at 2∆1 − 1 ∈ (0, 1], and we have φ1(u∗2) ≥ u∗2 for u∗2 ∈ [0, 2∆1 − 1]. Figure 1

displays φ1(·) for ∆1 = 0.8.
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Regarding (15), it can be written as (1− u∗1)
2 = (1− u∗2/∆2)(1− u∗2

2) since ∆2 > 0 and u∗2 < 1.

In particular, this requires u∗2 ≤ ∆2 as the LHS is non-negative. Hence,

u∗1 = 1−

√
(1−

u∗2
∆2

)(1− u∗2
2) ≡ φ2(u∗2) > 0 for u∗2 ∈ (0, ∆2] (18)

with φ2(0) = 0. Note that φ2(∆2) = 1. Moreover, φ2(·) is strictly increasing and convex on [0, ∆2].23

We also note that φ′2(0) =
1

2∆2
. Furthermore, φ2(·) intersects the 45o-line at 2∆1 − 1 ∈ (0, 1] when

∆2 = ∆1. Figure 1 displays φ2(·) for ∆2 = 0.3125, 0.5, 0.8.

For any ∆1 ∈ ( 1
2 , 1), we now show that the set of equilibrium thresholds (u∗1 , u∗2) is the red-

highlighted curved segment without the left-hand point in Figure 1. Fix ∆1 ∈ ( 1
2 , 1). Note that

the two functions φ1(·) and φ2(·) intersect exactly once at some point (u∗1 , u∗2) ∈ (0, 1)2 provided

2∆1 > 1
2∆2

(i.e. ∆1∆2 > 1
4 ). Moreover, φ2(·) rotates clockwise as ∆2 increases in ( 1

4∆1
, ∆1].24 Thus, the

intersection point (u∗1 , u∗2) traces out φ1(·) on some nonempty range (u∗2 , u∗2 ] ⊂ (0, 1) as ∆2 increases

in ( 1
4∆1

, ∆1]. By the inequalities in (16), we have u∗2 = 0 as the limit of solution u∗2 as ∆2 ↓ 1
4∆1

.

Moreover, when ∆2 = ∆1, u∗1 = u∗2 = 2∆1 − 1 is the non-trivial solution that solves the equilibrium

conditions. Thus, u∗2 = 2∆1 − 1. By construction, we have u∗1 ≥ u∗2 , where u∗1 = φ1(u∗2) = φ2(u∗2).

Now, we let ∆1 smoothly increase in ( 1
2 , 1). The set of equilibrium thresholds for each ∆1 strictly

and smoothly moves up with respect to ∆1, because φ1(u∗2) continuously rotates up for any given

u∗2 ∈ [0, 1] from (17). The upper bound is φo(u∗2), where

φo(t) ≡ −
1
2
+

√
1
4
+ 2t, for t ≥ 0

which is φ1(·) when ∆1 = 1. When ∆1 = 1 and ∆2 ∈ ( 1
4∆1

, ∆1) = ( 1
4 , 1), the same argument

as above shows that the set of equilibrium thresholds (u∗1 , u∗2) is as displayed in Figure 2 when

∆2 increases in ( 1
4 , 1). When (∆1, ∆2) = (1, 1), it can be shown that (u∗1 , u∗2) = (1, 1) is the only

equilibrium other than (0, 0). Collecting results, we have shown that, when (∆1, ∆2) varies in

23The strict monotonicity is straightforward. For the convexity, note that

φ′′2 (u2) =
4(∆2 − 3u2)(∆2 − u2)(1− u2

2) + (1 + 2∆2u2 − 3u2
2)

2

4∆2
2

[
(1− u2

∆2
)(1− u2

2)
]3/2 .

Thus, it suffices to show

4(∆2 − 3u2)(∆2 − u2)(1− u2
2) + (1 + 2∆2u2 − 3u2

2)
2 ≥ 0, ∀ u2 ∈ [0, ∆2].

Note that 4(∆2 − 3u2)(∆2 − u2)(1− u2
2) + (1 + 2∆2u2 − 3u2

2)
2 is decreasing in u2 ∈ [0, ∆2] with derivative

−12(∆2 − u2)(1− u2
2) ≤ 0, ∀ u2 ∈ [0, ∆2].

Thus 4(∆2 − 3u2)(∆2 − u2)(1− u2
2) + (1 + 2∆2u2 − 3u2

2)
2 ≥ (1− ∆2

2)
2 ≥ 0 for all u2 ∈ [0, ∆2].

24This statement follows Milgrom and Shannon (1994) and the fact that (18) is strictly decreasing in ∆2.
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{(∆1, ∆2) ∈ [0, 1]2 : ∆1∆2 > 1
4 , ∆1 ≥ ∆2}, the corresponding range of equilibrium thresholds is

{(u∗1 , u∗2) ∈ (0, 1]2 : u∗2 ≤ u∗1 ≤ φo(u∗2)}.

Next, we turn to the second case ∆1∆2 > 1
4 and ∆1 ≤ ∆2. By switching the indices 1 and 2, we

obtain a similar result. Namely, when (∆1, ∆2) varies in {(∆1, ∆2) ∈ [0, 1]2 : ∆1∆2 > 1
4 , ∆1 ≤ ∆2},

the corresponding range of equilibrium thresholds is {(u∗1 , u∗2) ∈ (0, 1]2 : u∗1 ≤ u∗2 ≤ φo(u∗1)}. Thus,

we have established the following lemma.

Lemma 8. Suppose Assumptions TD and P0 hold. There exists a pair of equilibrium thresholds [u∗1(x), u∗2(x)]

for every pair of payoff differences (∆1(x), ∆2(x)) ∈ [0, 1]2. The corresponding set of equilibrium threshold

pairs is Su∗ ≡ {(u∗1 , u∗2) ∈ [0, 1]2 : u∗1 ≤ φo(u∗2), u∗2 ≤ φo(u∗1)}.

The shaded lens in Figure 3 represents the corresponding set Su∗ of equilibrium threshold pairs.

As a matter of fact, our preceding argument shows that the equilibrium can be written as u∗(x) =

(ξ(∆1(x), ∆2(x)), ξ(∆2(x), ∆1(x))) for some continuous function ξ : [0, 1]2 7→ [0, 1] satisfying

(i) ξ(∆1, ∆2) ≥ ξ(∆2, ∆1) if ∆1 ≥ ∆2, and ξ(∆, ∆) = 2∆− 1;

(ii) ξ(∆1, ∆2) > 0 if ∆1∆2 > 1
4 , and ξ(∆1, ∆2) = 0 if ∆1∆2 ≤ 1

4 ;

(iii) ξ(∆1, ∆2) is strictly increasing in both its arguments on {(∆1, ∆2) ∈ [0, 1]2 : ∆1∆2 ≥ 1
4}.

We can now verify Assumption SC under the following assumption.

Assumption S0. (i) The pair of payoff differences (∆1(X), ∆2(X)) has support [0, 1]2.

Assumption S0-(i) is a condition on the functional form of the payoff differences and/or the support

of X. By Lemma 8, it follows that the pair of equilibrium thresholds [u∗1(X), u∗2(X)] has support

{(u∗1 , u∗2) ∈ [0, 1]2 : u∗1 ≤ φo(u∗2), u∗2 ≤ φo(u∗1)}. Moreover, we have

αi(x) = P[Ui ≤ u∗i (x)] =
3
2

u∗i (x)− 1
2

u∗3i (x)

which is strictly increasing in u∗i (x) ∈ [0, 1]. It follows that the support Sα(X) of [α1(X), α2(X)] is

Sα(X) = {(α1, α2) ∈ [0, 1]2 : QU1(α1) ≤ φo[QU2(α2)], QU2(α2) ≤ φo[QU1(α1)]}

The shaded lens in Figure 4 represents Sα(X). Thus, Assumption SC is verified.

E.3. Verifying Assumptions ER, V and N. From Section 4.2, the copula CU1U2(α1, α2) is identified

on Sα(X) by

C(α1, α2) = P[Y1 = 1, Y2 = 1|α1(X) = α1, α2(X) = α2]
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where αi(X) = P(Yi = 1|X). By Lemma 2, the marginal equilibrium beliefs are identified by

σ∗−i(1|x, u∗i (x)) =
∂C(α1(x), α2(x))

∂αi
, i = 1, 2.

Next, to identify the payoffs, we make the following exclusion restrictions.

Assumption E0. Let X = (W0, W1, W2) and Xi = (W0, Wi). For i = 1, 2 and all x = (w0, w1, w2), the

payoff differences satisfy ∆i(x) = ∆i(xi) where xi = (w0, wi).

Thus, Wi is specific to player i while W0 is common to both players. Under Assumptions P0 and E0,

Assumption ER holds. Moreover, σ∗−i(1|X, u∗i (X)) =
u∗i (X)

∆i(Xi)
provided ∆i(Xi) > 0, because of (3) and

Assumptions P0 and E0. Therefore,

Σ∗−i(X) =

 σ∗−i(1|X, u∗i (X))− E[σ∗−i(1|X, u∗i (X))|Xi, αi(X)]

σ∗−i(0|X, u∗i (X))− E[σ∗−i(0|X, u∗i (X))|Xi, αi(X)]


=

 u∗i (X)

∆i(Xi)
−E

[
u∗i (X)

∆i(Xi)
|Xi, αi(X)

]
− u∗i (X)

∆i(Xi)
+ E

[
u∗i (X)

∆i(Xi)
|Xi, αi(X)

]
 =

 0

0

 .

Thus, the 2× 2 covariance matrixRi(xi) of Σ∗−i(X) conditional on Xi = xi has rank 0.

Assumption S0. (ii) The support of ∆i(Xi) is monotone in W0 ∈ R; (iii) The support of W0, W1 and W2 is

a cartesian product.

We now turn to Assumption V and Assumption N. Fix xi = (w0, wi) such that ∆i(xi) ∈ ( 1
4 , 1). More-

over, we pick x−i = (w0, w−i) and x̃−i = (w0, w̃−i) such that 1
4 < ∆−i(x−i) < ∆−i(x̃−i) < ∆i(xi). Be-

cause x−i and x̃−i can be chosen such that ∆−i(x−i) and ∆−i(x̃−i) are arbitrarily close under Assump-

tion S0, we have (u∗i (xi, x−i), u∗−i(xi, x̃−i)) ∈ S(u∗i (X),u∗−i(X)). Therefore, (αi(xi, x−i), α−i(xi, x̃−i)) ∈

Sα(X). See Figure 5. Thus, Assumption V is verified. By Proposition 5, the sign of ∆i(xi) is identified.

Furthermore, Assumption S0 implies that there exists some x∗i = (w∗0 , w∗i ) in the support of Xi such

that ∆i(x∗i ) = 1 and S∆−i(X−i)|Xi=x∗i
= [0, 1]. It follows that Su∗i (X)|Xi=x∗i

= [0, 1] (see Figure 2), from

which Assumption N-(iii) holds. Thus, under the normalization |∆i(x∗i )| = 1 so that Assumption

N-(i,ii) holds, we identify ∆i(·) on the support of Xi and QUi (·) on (0, 1) by Proposition 6 and

Corollary 3.

An example satisfying Assumptions E0 and S0 is as follows. Let SX = [−1, 1]× [0, 1]2, and

∆1(X1) = ϕ1(W0)× 1(W0 ≥ 0)[1− θ1(W1)] + θ1(W1);

∆2(X2) = ϕ2(W0)× 1(W0 < 0)[1− θ2(W2)] + θ2(W2),
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where θ1(·) and θ2(·) are monotone mappings from [0, 1] onto [0, 1], ϕ1(·) is a monotone mapping

from [0, 1] onto [0, 1], and ϕ2(·) is a monotone mapping from [−1, 0] onto [0, 1]. For instance, this is

the case when θi(wi) = wki
i and ϕi(w0) = |w0|k0 , where k0, k1, k2 > 0. Thus, Assumption N holds

for i = 1 by setting w∗0 > 0 and w∗1 ∈ [0, 1] such that ϕ1(w∗0) = 1 or θ1(w∗1) = 1.
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FIGURE 1. u∗1 = φ1(u∗2) for ∆1 = 0.8 and u∗1 = φ2(u∗2) for ∆2 = 0.3125, 0.5, 0.8
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FIGURE 2. u∗1 = φ1(u∗2) for ∆1 = 1 and u∗1 = φ2(u∗2) for ∆2 = 0.25, 0.5, 1
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FIGURE 3. Support of (u∗1(X), u∗2(X))

FIGURE 4. Support of (α1(X), α2(X))
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FIGURE 5. Verifying Assumption N-(iii)
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